rsyslog/runtime/queue.c
Rainer Gerhards 3830484fdb
queue: refactor batch deletion with explicit phases (#6013)
Introduce explicit phases for DeleteBatchFromQStore to
streamline logic and enforce deterministic dequeue IDs.

With the help of AI-Agent: ChatGPT
2025-08-28 18:23:31 +02:00

3658 lines
150 KiB
C

/* queue.c
*
* This file implements the queue object and its several queueing methods.
*
* File begun on 2008-01-03 by RGerhards
*
* There is some in-depth documentation available in doc/dev_queue.html
* (and in the web doc set on https://www.rsyslog.com/doc/). Be sure to read it
* if you are getting aquainted to the object.
*
* NOTE: as of 2009-04-22, I have begin to remove the qqueue* prefix from static
* function names - this makes it really hard to read and does not provide much
* benefit, at least I (now) think so...
*
* Copyright 2008-2025 Rainer Gerhards and Adiscon GmbH.
*
* This file is part of the rsyslog runtime library.
*
* The rsyslog runtime library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* The rsyslog runtime library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the rsyslog runtime library. If not, see <http://www.gnu.org/licenses/>.
*
* A copy of the GPL can be found in the file "COPYING" in this distribution.
* A copy of the LGPL can be found in the file "COPYING.LESSER" in this distribution.
*/
/**
* @file queue.c
* @brief This file implements the rsyslog queueing subsystem.
*
* @section queue_maintenance Important Note on Maintenance
*
* This header comment contains critical information on the system's
* architecture and design philosophy. It is essential that this comment, and
* all other relevant documentation, be **updated whenever architectural or
* other significant changes are made to the queueing subsystem.**
*
* Maintaining synchronization between code and documentation is vital for
* long-term project health, developer onboarding, and to enable automated
* tools and AI agents to accurately analyze the codebase and detect potential
* issues arising from undocumented changes. This documentation reflects the
* state of the system as of mid-2025, based on a battle-proven design that
* originated circa 2004.
*
* @section queue_architecture Architectural Overview and Design Philosophy
*
* The rsyslog queueing system is a fundamental component for providing both
* performance and reliability. It is built on a powerful abstraction: a queue
* can be placed at two key points in the message processing pipeline:
*
* 1. **Ruleset Queue (Main Message Queue):** Each ruleset has a single queue
* that buffers messages received from inputs *before* they are processed
* by the ruleset's filters. This decouples message ingestion from filter
* processing, allowing rsyslog to handle massive input bursts without
* losing messages. The queue for the default ruleset is often referred
* to by its historical name, the "main message queue".
*
* 2. **Action Queue:** Each action within a ruleset can have its own dedicated
* queue. This decouples the filter engine from the output action (e.g.,
* writing to a file or sending over the network).
*
* This system's design is a testament to operator-centric control, providing
* a sophisticated toolkit of compromises. This contrasts sharply with modern
* "WAL-only" log shippers, making rsyslog uniquely versatile.
*
*
* @subsection queue_types The Four Queue Types
*
* Rsyslog offers four queue types, each with a specific performance and
* reliability profile. They are listed here from most lightweight to most
* robust.
*
* 1. **Direct (The "No-Queue" Queue)**
* - **Behavior:** The default for all **action queues**. No buffering occurs. The
* worker thread from the parent queue (usually the ruleset's queue)
* executes the action's logic directly.
* - **Use Case:** For fast, non-blocking, local actions (e.g., `omfile`).
* - **Warning:** If a Direct-queued action blocks, it stalls the worker
* thread, potentially halting all processing for that worker.
*
* 2. **In-Memory (LinkedList and FixedArray)**
* - **Behavior:** Buffers messages in RAM. Extremely fast but offers no
* persistence across restarts.
* - **Sub-Types:**
* - `LinkedList`: The recommended default for most in-memory queues. It is
* memory-efficient, allocating space only for messages it holds.
* - `FixedArray`: A legacy option that pre-allocates a static array of
* pointers. It can be slightly faster under constant load but is
* less memory-efficient. It remains the default for ruleset queues.
* - **Use Case:** High-performance buffering where a potential loss of
* in-flight messages on crash is acceptable.
*
* 3. **Disk (The "Pure-Disk" Queue)**
* - **Behavior:** Writes every single message to a disk-based queue structure
* before acknowledging the enqueue operation. This queue provides a
* **"Limited Duplication"** guarantee, not a simple "at-least-once".
* - **The `.qi` Checkpoint File:** The queue's state (read/write pointers)
* is persisted in a `.qi` file. The `queue.checkpointInterval` parameter
* dictates how often this file is updated, allowing the user to tune
* the trade-off between I/O performance and duplication risk. A value
* of `1` provides near-exactly-once delivery, essential for "dumb"
* (non-deduplicating) receivers.
* - **Use Case:** For audit-grade logging chains where no message loss can
* be tolerated, even in the case of a power failure or ungraceful shutdown.
*
* 4. **Disk-Assisted (DA) (The Hybrid "Best-of-Both-Worlds" Queue)**
* - **Behavior:** This is the most sophisticated queue type. It acts as a
* multi-stage defense system against data loss.
* - **Stage 1: In-Memory First:** By default, it operates as a high-speed
* `LinkedList` queue with zero disk I/O.
* - **Stage 2: Disk Spooling:** If the in-memory queue exceeds its
* `highwatermark` (e.g., due to downstream backpressure), it seamlessly
* activates its internal **Disk Queue** and begins spooling messages
* to disk. This provides resilience to transient failures without the
* constant performance penalty of a pure Disk queue. The disk portion
* operates with its own "Limited Duplication" guarantee.
* - **Stage 3: Load Shedding:** If all buffers (memory and disk) are full,
* the queue hits the `queue.discardMark`. It can then begin to discard
* messages based on severity (`queue.discardSeverity`), preserving
* critical logs during a total system overload.
* - **Use Case:** The recommended choice for any potentially unreliable or
* slow action, or for a ruleset queue that needs to survive downstream
* outages.
*
*
* @subsection comparison_to_wal Rsyslog's "Bounded Queue" vs. a WAL's "Unbounded Stream"
*
* It is critical to understand that rsyslog's disk-based queues implement a
* **Bounded FIFO Queue**, which is architecturally different from the
* **Unbounded Stream** model of a Write-Ahead Log (WAL) found in tools like
* Fluent Bit or Vector.
*
* - **Rsyslog's Model:** The `.qi` file checkpoints the queue's *structure*,
* containing two primary tuples: `write_ptr = (segment, offset)` and
* `read_ptr = (segment, offset)`. This defines the queue's boundaries.
* Consumption is a destructive action that advances the `read_ptr`. On a
* graceful restart (e.g., K8s `SIGTERM`), DA queues flush memory to disk,
* ensuring **zero data loss**. On a crash, only the `checkpointInterval`-worth
* of messages are at risk of replay. This fine-grained control makes it safe
* for both smart and dumb receivers. **Note:** A known operational risk is
* that the current implementation does not gracefully handle a missing or
* corrupt `.qi` file in conjunction with pre-existing queue segment files.
* This can lead to startup failures or inconsistent state and is a top
* priority for future reliability enhancements.
*
*
* - **WAL Model:** A WAL is a simple, append-only log. The checkpoint is just
* a consumer's *offset*. On restart, a WAL-based shipper replays *all data*
* from the last offset, which can be massive. This model mandates a smart,
* idempotent receiver and is fundamentally unsafe for dumb endpoints.*
* @subsection naming_convention Historical Naming: queue vs. qqueue
*
* Throughout the code, you will see types and variables prefixed with `qqueue`
* (e.g., `qqueue_t`). This is the result of a historical name change.
* Originally, these were named `queue`, but this caused symbol clashes on some
* platforms (e.g., AIX) where `queue` is a reserved name in system libraries.
* The name was changed to `qqueue` ("queue object for the queueing subsystem")
* to ensure portability.
*
*
* @section conclusion Summary for Developers
*
* When working with this code, remember that you are not dealing with a simple
* log appender. You are maintaining a transactional, persistent FIFO queue.
* The logic surrounding the `.qi` file, segment files, and the read/write
* pointers is designed to provide robust, tunable delivery guarantees that are
* a core feature of rsyslog. This makes it more versatile than pure WAL-based
* log shippers.
*
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <signal.h>
#include <pthread.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h> /* required for HP UX */
#include <time.h>
#include <errno.h>
#include <inttypes.h>
#include "rsyslog.h"
#include "queue.h"
#include "stringbuf.h"
#include "srUtils.h"
#include "obj.h"
#include "wtp.h"
#include "wti.h"
#include "msg.h"
#include "obj.h"
#include "atomic.h"
#include "errmsg.h"
#include "datetime.h"
#include "unicode-helper.h"
#include "statsobj.h"
#include "parserif.h"
#include "rsconf.h"
#ifdef OS_SOLARIS
#include <sched.h>
#endif
/* static data */
DEFobjStaticHelpers;
DEFobjCurrIf(glbl) DEFobjCurrIf(strm) DEFobjCurrIf(datetime) DEFobjCurrIf(statsobj)
#if __GNUC__ >= 8
#pragma GCC diagnostic ignored "-Wcast-function-type" // TODO: investigate further!
#endif /* if __GNUC__ >= 8 */
#ifdef ENABLE_IMDIAG
unsigned int iOverallQueueSize = 0;
#endif
#define OVERSIZE_QUEUE_WATERMARK 500000 /* when is a queue considered to be "overly large"? */
/* forward-definitions */
static rsRetVal doEnqSingleObj(qqueue_t *pThis, flowControl_t flowCtlType, smsg_t *pMsg);
static rsRetVal qqueueChkPersist(qqueue_t *pThis, int nUpdates);
static rsRetVal RateLimiter(qqueue_t *pThis);
static rsRetVal qqueueChkStopWrkrDA(qqueue_t *pThis);
static rsRetVal GetDeqBatchSize(qqueue_t *pThis, int *pVal);
static rsRetVal ConsumerDA(qqueue_t *pThis, wti_t *pWti);
static rsRetVal batchProcessed(qqueue_t *pThis, wti_t *pWti);
static rsRetVal qqueueMultiEnqObjNonDirect(qqueue_t *pThis, multi_submit_t *pMultiSub);
static rsRetVal qqueueMultiEnqObjDirect(qqueue_t *pThis, multi_submit_t *pMultiSub);
static rsRetVal qAddDirect(qqueue_t *pThis, smsg_t *pMsg);
static rsRetVal qDestructDirect(qqueue_t __attribute__((unused)) * pThis);
static rsRetVal qConstructDirect(qqueue_t __attribute__((unused)) * pThis);
static rsRetVal qDestructDisk(qqueue_t *pThis);
rsRetVal qqueueSetSpoolDir(qqueue_t *pThis, uchar *pszSpoolDir, int lenSpoolDir);
/* some constants for queuePersist () */
#define QUEUE_CHECKPOINT 1
#define QUEUE_NO_CHECKPOINT 0
/* tables for interfacing with the v6 config system */
static struct cnfparamdescr cnfpdescr[] = {{"queue.filename", eCmdHdlrGetWord, 0},
{"queue.spooldirectory", eCmdHdlrGetWord, 0},
{"queue.size", eCmdHdlrSize, 0},
{"queue.dequeuebatchsize", eCmdHdlrInt, 0},
{"queue.mindequeuebatchsize", eCmdHdlrInt, 0},
{"queue.mindequeuebatchsize.timeout", eCmdHdlrInt, 0},
{"queue.maxdiskspace", eCmdHdlrSize, 0},
{"queue.highwatermark", eCmdHdlrInt, 0},
{"queue.lowwatermark", eCmdHdlrInt, 0},
{"queue.fulldelaymark", eCmdHdlrInt, 0},
{"queue.lightdelaymark", eCmdHdlrInt, 0},
{"queue.discardmark", eCmdHdlrInt, 0},
{"queue.discardseverity", eCmdHdlrFacility, 0},
{"queue.checkpointinterval", eCmdHdlrInt, 0},
{"queue.syncqueuefiles", eCmdHdlrBinary, 0},
{"queue.type", eCmdHdlrQueueType, 0},
{"queue.workerthreads", eCmdHdlrInt, 0},
{"queue.timeoutshutdown", eCmdHdlrInt, 0},
{"queue.timeoutactioncompletion", eCmdHdlrInt, 0},
{"queue.timeoutenqueue", eCmdHdlrInt, 0},
{"queue.timeoutworkerthreadshutdown", eCmdHdlrInt, 0},
{"queue.workerthreadminimummessages", eCmdHdlrInt, 0},
{"queue.maxfilesize", eCmdHdlrSize, 0},
{"queue.saveonshutdown", eCmdHdlrBinary, 0},
{"queue.dequeueslowdown", eCmdHdlrInt, 0},
{"queue.dequeuetimebegin", eCmdHdlrInt, 0},
{"queue.dequeuetimeend", eCmdHdlrInt, 0},
{"queue.cry.provider", eCmdHdlrGetWord, 0},
{"queue.samplinginterval", eCmdHdlrInt, 0},
{"queue.takeflowctlfrommsg", eCmdHdlrBinary, 0}};
static struct cnfparamblk pblk = {CNFPARAMBLK_VERSION, sizeof(cnfpdescr) / sizeof(struct cnfparamdescr), cnfpdescr};
/* support to detect duplicate queue file names */
struct queue_filename {
struct queue_filename *next;
const char *dirname;
const char *filename;
};
struct queue_filename *queue_filename_root = NULL;
/* debug aid */
#if 0
static inline void displayBatchState(batch_t *pBatch)
{
int i;
for(i = 0 ; i < pBatch->nElem ; ++i) {
DBGPRINTF("displayBatchState %p[%d]: %d\n", pBatch, i, pBatch->eltState[i]);
}
}
#endif
static rsRetVal qqueuePersist(qqueue_t *pThis, int bIsCheckpoint);
/* do cleanup when config is loaded */
void qqueueDoneLoadCnf(void) {
struct queue_filename *next, *del;
next = queue_filename_root;
while (next != NULL) {
del = next;
next = next->next;
free((void *)del->filename);
free((void *)del->dirname);
free((void *)del);
}
}
/***********************************************************************
* we need a private data structure, the "to-delete" list. As C does
* not provide any partly private data structures, we implement this
* structure right here inside the module.
* Note that this list must always be kept sorted based on a unique
* dequeue ID (which is monotonically increasing).
* rgerhards, 2009-05-18
***********************************************************************/
/* generate next uniqueue dequeue ID. Note that uniqueness is only required
* on a per-queue basis and while this instance runs. So a stricly monotonically
* increasing counter is sufficient (if enough bits are used).
*/
static inline qDeqID getNextDeqID(qqueue_t *pQueue) {
ISOBJ_TYPE_assert(pQueue, qqueue);
return pQueue->deqIDAdd++;
}
/* return the top element of the to-delete list or NULL, if the
* list is empty.
*/
static toDeleteLst_t *tdlPeek(qqueue_t *pQueue) {
ISOBJ_TYPE_assert(pQueue, qqueue);
return pQueue->toDeleteLst;
}
/* remove the top element of the to-delete list. Nothing but the
* element itself is destroyed. Must not be called when the list
* is empty.
*/
static rsRetVal tdlPop(qqueue_t *pQueue) {
toDeleteLst_t *pRemove;
DEFiRet;
ISOBJ_TYPE_assert(pQueue, qqueue);
assert(pQueue->toDeleteLst != NULL);
pRemove = pQueue->toDeleteLst;
pQueue->toDeleteLst = pQueue->toDeleteLst->pNext;
free(pRemove);
RETiRet;
}
/* Add a new to-delete list entry. The function allocates the data
* structure, populates it with the values provided and links the new
* element into the correct place inside the list.
*/
static rsRetVal tdlAdd(qqueue_t *pQueue, qDeqID deqID, int nElemDeq) {
toDeleteLst_t *pNew;
toDeleteLst_t *pPrev;
DEFiRet;
ISOBJ_TYPE_assert(pQueue, qqueue);
assert(pQueue->toDeleteLst != NULL);
CHKmalloc(pNew = malloc(sizeof(toDeleteLst_t)));
pNew->deqID = deqID;
pNew->nElemDeq = nElemDeq;
/* now find right spot */
for (pPrev = pQueue->toDeleteLst; pPrev != NULL && deqID > pPrev->deqID; pPrev = pPrev->pNext) {
/*JUST SEARCH*/;
}
if (pPrev == NULL) {
pNew->pNext = pQueue->toDeleteLst;
pQueue->toDeleteLst = pNew;
} else {
pNew->pNext = pPrev->pNext;
pPrev->pNext = pNew;
}
finalize_it:
RETiRet;
}
/* methods */
static const char *getQueueTypeName(queueType_t t) {
const char *r;
switch (t) {
case QUEUETYPE_FIXED_ARRAY:
r = "FixedArray";
break;
case QUEUETYPE_LINKEDLIST:
r = "LinkedList";
break;
case QUEUETYPE_DISK:
r = "Disk";
break;
case QUEUETYPE_DIRECT:
r = "Direct";
break;
default:
r = "invalid/unknown queue mode";
break;
}
return r;
}
void qqueueDbgPrint(qqueue_t *pThis) {
dbgoprint((obj_t *)pThis, "parameter dump:\n");
dbgoprint((obj_t *)pThis, "queue.filename '%s'\n",
(pThis->pszFilePrefix == NULL) ? "[NONE]" : (char *)pThis->pszFilePrefix);
dbgoprint((obj_t *)pThis, "queue.size: %d\n", pThis->iMaxQueueSize);
dbgoprint((obj_t *)pThis, "queue.dequeuebatchsize: %d\n", pThis->iDeqBatchSize);
dbgoprint((obj_t *)pThis, "queue.mindequeuebatchsize: %d\n", pThis->iMinDeqBatchSize);
dbgoprint((obj_t *)pThis, "queue.mindequeuebatchsize.timeout: %d\n", pThis->toMinDeqBatchSize);
dbgoprint((obj_t *)pThis, "queue.maxdiskspace: %lld\n", pThis->sizeOnDiskMax);
dbgoprint((obj_t *)pThis, "queue.highwatermark: %d\n", pThis->iHighWtrMrk);
dbgoprint((obj_t *)pThis, "queue.lowwatermark: %d\n", pThis->iLowWtrMrk);
dbgoprint((obj_t *)pThis, "queue.fulldelaymark: %d\n", pThis->iFullDlyMrk);
dbgoprint((obj_t *)pThis, "queue.lightdelaymark: %d\n", pThis->iLightDlyMrk);
dbgoprint((obj_t *)pThis, "queue.takeflowctlfrommsg: %d\n", pThis->takeFlowCtlFromMsg);
dbgoprint((obj_t *)pThis, "queue.discardmark: %d\n", pThis->iDiscardMrk);
dbgoprint((obj_t *)pThis, "queue.discardseverity: %d\n", pThis->iDiscardSeverity);
dbgoprint((obj_t *)pThis, "queue.checkpointinterval: %d\n", pThis->iPersistUpdCnt);
dbgoprint((obj_t *)pThis, "queue.syncqueuefiles: %d\n", pThis->bSyncQueueFiles);
dbgoprint((obj_t *)pThis, "queue.type: %d [%s]\n", pThis->qType, getQueueTypeName(pThis->qType));
dbgoprint((obj_t *)pThis, "queue.workerthreads: %d\n", pThis->iNumWorkerThreads);
dbgoprint((obj_t *)pThis, "queue.timeoutshutdown: %d\n", pThis->toQShutdown);
dbgoprint((obj_t *)pThis, "queue.timeoutactioncompletion: %d\n", pThis->toActShutdown);
dbgoprint((obj_t *)pThis, "queue.timeoutenqueue: %d\n", pThis->toEnq);
dbgoprint((obj_t *)pThis, "queue.timeoutworkerthreadshutdown: %d\n", pThis->toWrkShutdown);
dbgoprint((obj_t *)pThis, "queue.workerthreadminimummessages: %d\n", pThis->iMinMsgsPerWrkr);
dbgoprint((obj_t *)pThis, "queue.maxfilesize: %lld\n", pThis->iMaxFileSize);
dbgoprint((obj_t *)pThis, "queue.saveonshutdown: %d\n", pThis->bSaveOnShutdown);
dbgoprint((obj_t *)pThis, "queue.dequeueslowdown: %d\n", pThis->iDeqSlowdown);
dbgoprint((obj_t *)pThis, "queue.dequeuetimebegin: %d\n", pThis->iDeqtWinFromHr);
dbgoprint((obj_t *)pThis, "queue.dequeuetimeend: %d\n", pThis->iDeqtWinToHr);
}
/* get the physical queue size. Must only be called
* while mutex is locked!
* rgerhards, 2008-01-29
*/
static int getPhysicalQueueSize(qqueue_t *pThis) {
return (int)PREFER_FETCH_32BIT(pThis->iQueueSize);
}
/* get the logical queue size (that is store size minus logically dequeued elements).
* Must only be called while mutex is locked!
* rgerhards, 2009-05-19
*/
static int getLogicalQueueSize(qqueue_t *pThis) {
return pThis->iQueueSize - pThis->nLogDeq;
}
/* This function drains the queue in cases where this needs to be done. The most probable
* reason is a HUP which needs to discard data (because the queue is configured to be lossy).
* During a shutdown, this is typically not needed, as the OS frees up ressources and does
* this much quicker than when we clean up ourselvs. -- rgerhards, 2008-10-21
* This function returns void, as it makes no sense to communicate an error back, even if
* it happens.
* This functions works "around" the regular deque mechanism, because it is only used to
* clean up (in cases where message loss is acceptable).
*/
static void queueDrain(qqueue_t *pThis) {
smsg_t *pMsg;
assert(pThis != NULL);
DBGOPRINT((obj_t *)pThis, "queue (type %d) will lose %d messages, destroying...\n", pThis->qType,
pThis->iQueueSize);
/* iQueueSize is not decremented by qDel(), so we need to do it ourselves */
while (ATOMIC_DEC_AND_FETCH(&pThis->iQueueSize, &pThis->mutQueueSize) > 0) {
pThis->qDeq(pThis, &pMsg);
if (pMsg != NULL) {
msgDestruct(&pMsg);
}
pThis->qDel(pThis);
}
}
/* --------------- code for disk-assisted (DA) queue modes -------------------- */
/* returns the number of workers that should be advised at
* this point in time. The mutex must be locked when
* ths function is called. -- rgerhards, 2008-01-25
*/
static rsRetVal qqueueAdviseMaxWorkers(qqueue_t *pThis) {
DEFiRet;
int iMaxWorkers;
ISOBJ_TYPE_assert(pThis, qqueue);
if (!pThis->bEnqOnly) {
if (pThis->bIsDA && getLogicalQueueSize(pThis) >= pThis->iHighWtrMrk) {
DBGOPRINT((obj_t *)pThis, "(re)activating DA worker\n");
wtpAdviseMaxWorkers(pThis->pWtpDA, 1, DENY_WORKER_START_DURING_SHUTDOWN);
/* disk queues have always one worker */
}
if (getLogicalQueueSize(pThis) == 0) {
iMaxWorkers = 0;
} else if (pThis->iMinMsgsPerWrkr == 0) {
iMaxWorkers = 1;
} else {
iMaxWorkers = getLogicalQueueSize(pThis) / pThis->iMinMsgsPerWrkr + 1;
}
wtpAdviseMaxWorkers(pThis->pWtpReg, iMaxWorkers, DENY_WORKER_START_DURING_SHUTDOWN);
}
RETiRet;
}
/* check if we run in disk-assisted mode and record that
* setting for easy (and quick!) access in the future. This
* function must only be called from constructors and only
* from those that support disk-assisted modes (aka memory-
* based queue drivers).
* rgerhards, 2008-01-14
*/
static rsRetVal qqueueChkIsDA(qqueue_t *pThis) {
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
if (pThis->pszFilePrefix != NULL) {
pThis->bIsDA = 1;
DBGOPRINT((obj_t *)pThis, "is disk-assisted, disk will be used on demand\n");
} else {
DBGOPRINT((obj_t *)pThis, "is NOT disk-assisted\n");
}
RETiRet;
}
/* Start disk-assisted queue mode.
* rgerhards, 2008-01-15
*/
static rsRetVal StartDA(qqueue_t *pThis) {
DEFiRet;
uchar pszDAQName[128];
ISOBJ_TYPE_assert(pThis, qqueue);
/* create message queue */
CHKiRet(qqueueConstruct(&pThis->pqDA, QUEUETYPE_DISK, pThis->iNumWorkerThreads, 0, pThis->pConsumer));
/* give it a name */
snprintf((char *)pszDAQName, sizeof(pszDAQName), "%s[DA]", obj.GetName((obj_t *)pThis));
obj.SetName((obj_t *)pThis->pqDA, pszDAQName);
/* as the created queue is the same object class, we take the
* liberty to access its properties directly.
*/
pThis->pqDA->pqParent = pThis;
CHKiRet(qqueueSetpAction(pThis->pqDA, pThis->pAction));
CHKiRet(qqueueSetsizeOnDiskMax(pThis->pqDA, pThis->sizeOnDiskMax));
CHKiRet(qqueueSetiDeqSlowdown(pThis->pqDA, pThis->iDeqSlowdown));
CHKiRet(qqueueSetMaxFileSize(pThis->pqDA, pThis->iMaxFileSize));
CHKiRet(qqueueSetFilePrefix(pThis->pqDA, pThis->pszFilePrefix, pThis->lenFilePrefix));
CHKiRet(qqueueSetSpoolDir(pThis->pqDA, pThis->pszSpoolDir, pThis->lenSpoolDir));
CHKiRet(qqueueSetiPersistUpdCnt(pThis->pqDA, pThis->iPersistUpdCnt));
CHKiRet(qqueueSetbSyncQueueFiles(pThis->pqDA, pThis->bSyncQueueFiles));
CHKiRet(qqueueSettoActShutdown(pThis->pqDA, pThis->toActShutdown));
CHKiRet(qqueueSettoEnq(pThis->pqDA, pThis->toEnq));
CHKiRet(qqueueSetiDeqtWinFromHr(pThis->pqDA, pThis->iDeqtWinFromHr));
CHKiRet(qqueueSetiDeqtWinToHr(pThis->pqDA, pThis->iDeqtWinToHr));
CHKiRet(qqueueSettoQShutdown(pThis->pqDA, pThis->toQShutdown));
CHKiRet(qqueueSetiHighWtrMrk(pThis->pqDA, 0));
CHKiRet(qqueueSetiDiscardMrk(pThis->pqDA, 0));
pThis->pqDA->iDeqBatchSize = pThis->iDeqBatchSize;
pThis->pqDA->iMinDeqBatchSize = pThis->iMinDeqBatchSize;
pThis->pqDA->iMinMsgsPerWrkr = pThis->iMinMsgsPerWrkr;
pThis->pqDA->iLowWtrMrk = pThis->iLowWtrMrk;
if (pThis->useCryprov) {
/* hand over cryprov to DA queue - in-mem queue does no longer need it
* and DA queue will be kept active from now on until termination.
*/
pThis->pqDA->useCryprov = pThis->useCryprov;
pThis->pqDA->cryprov = pThis->cryprov;
pThis->pqDA->cryprovData = pThis->cryprovData;
pThis->pqDA->cryprovName = pThis->cryprovName;
pThis->pqDA->cryprovNameFull = pThis->cryprovNameFull;
/* reset memory queue parameters */
pThis->useCryprov = 0;
/* pThis->cryprov cannot and need not be reset, is structure */
pThis->cryprovData = NULL;
pThis->cryprovName = NULL;
pThis->cryprovNameFull = NULL;
}
iRet = qqueueStart(runConf, pThis->pqDA);
/* file not found is expected, that means it is no previous QIF available */
if (iRet != RS_RET_OK && iRet != RS_RET_FILE_NOT_FOUND) {
errno = 0; /* else an errno is shown in errmsg! */
LogError(errno, iRet, "error starting up disk queue, using pure in-memory mode");
pThis->bIsDA = 0; /* disable memory mode */
FINALIZE; /* something is wrong */
}
DBGOPRINT((obj_t *)pThis, "DA queue initialized, disk queue 0x%lx\n", qqueueGetID(pThis->pqDA));
finalize_it:
if (iRet != RS_RET_OK) {
if (pThis->pqDA != NULL) {
qqueueDestruct(&pThis->pqDA);
}
LogError(0, iRet, "%s: error creating disk queue - giving up.", obj.GetName((obj_t *)pThis));
pThis->bIsDA = 0;
}
RETiRet;
}
/* initiate DA mode
* param bEnqOnly tells if the disk queue is to be run in enqueue-only mode. This may
* be needed during shutdown of memory queues which need to be persisted to disk.
* If this function fails (should not happen), DA mode is not turned on.
* rgerhards, 2008-01-16
*/
static rsRetVal ATTR_NONNULL() InitDA(qqueue_t *const pThis, const int bLockMutex) {
DEFiRet;
uchar pszBuf[64];
size_t lenBuf;
ISOBJ_TYPE_assert(pThis, qqueue);
if (bLockMutex == LOCK_MUTEX) {
d_pthread_mutex_lock(pThis->mut);
}
/* check if we already have a DA worker pool. If not, initiate one. Please note that the
* pool is created on first need but never again destructed (until the queue is). This
* is intentional. We assume that when we need it once, we may also need it on another
* occasion. Ressources used are quite minimal when no worker is running.
* rgerhards, 2008-01-24
* NOTE: this is the DA worker *pool*, not the DA queue!
*/
lenBuf = snprintf((char *)pszBuf, sizeof(pszBuf), "%s:DAwpool", obj.GetName((obj_t *)pThis));
CHKiRet(wtpConstruct(&pThis->pWtpDA));
CHKiRet(wtpSetDbgHdr(pThis->pWtpDA, pszBuf, lenBuf));
CHKiRet(wtpSetpfChkStopWrkr(pThis->pWtpDA, (rsRetVal(*)(void *pUsr, int))qqueueChkStopWrkrDA));
CHKiRet(wtpSetpfGetDeqBatchSize(pThis->pWtpDA, (rsRetVal(*)(void *pUsr, int *))GetDeqBatchSize));
CHKiRet(wtpSetpfDoWork(pThis->pWtpDA, (rsRetVal(*)(void *pUsr, void *pWti))ConsumerDA));
CHKiRet(wtpSetpfObjProcessed(pThis->pWtpDA, (rsRetVal(*)(void *pUsr, wti_t *pWti))batchProcessed));
CHKiRet(wtpSetpmutUsr(pThis->pWtpDA, pThis->mut));
CHKiRet(wtpSetiNumWorkerThreads(pThis->pWtpDA, 1));
CHKiRet(wtpSettoWrkShutdown(pThis->pWtpDA, pThis->toWrkShutdown));
CHKiRet(wtpSetpUsr(pThis->pWtpDA, pThis));
CHKiRet(wtpConstructFinalize(pThis->pWtpDA));
/* if we reach this point, we have a "good" DA worker pool */
/* now construct the actual queue (if it does not already exist) */
if (pThis->pqDA == NULL) {
CHKiRet(StartDA(pThis));
}
finalize_it:
if (bLockMutex == LOCK_MUTEX) {
d_pthread_mutex_unlock(pThis->mut);
}
RETiRet;
}
/* --------------- end code for disk-assisted queue modes -------------------- */
/* Now, we define type-specific handlers. The provide a generic functionality,
* but for this specific type of queue. The mapping to these handlers happens during
* queue construction. Later on, handlers are called by pointers present in the
* queue instance object.
*/
/* -------------------- fixed array -------------------- */
static rsRetVal qConstructFixedArray(qqueue_t *pThis) {
DEFiRet;
assert(pThis != NULL);
if (pThis->iMaxQueueSize == 0) ABORT_FINALIZE(RS_RET_QSIZE_ZERO);
if ((pThis->tVars.farray.pBuf = malloc(sizeof(void *) * pThis->iMaxQueueSize)) == NULL) {
ABORT_FINALIZE(RS_RET_OUT_OF_MEMORY);
}
pThis->tVars.farray.deqhead = 0;
pThis->tVars.farray.head = 0;
pThis->tVars.farray.tail = 0;
qqueueChkIsDA(pThis);
finalize_it:
RETiRet;
}
static rsRetVal qDestructFixedArray(qqueue_t *pThis) {
DEFiRet;
assert(pThis != NULL);
queueDrain(pThis); /* discard any remaining queue entries */
free(pThis->tVars.farray.pBuf);
RETiRet;
}
static rsRetVal qAddFixedArray(qqueue_t *pThis, smsg_t *in) {
DEFiRet;
assert(pThis != NULL);
pThis->tVars.farray.pBuf[pThis->tVars.farray.tail] = in;
pThis->tVars.farray.tail++;
if (pThis->tVars.farray.tail == pThis->iMaxQueueSize) pThis->tVars.farray.tail = 0;
RETiRet;
}
static rsRetVal qDeqFixedArray(qqueue_t *pThis, smsg_t **out) {
DEFiRet;
assert(pThis != NULL);
*out = (void *)pThis->tVars.farray.pBuf[pThis->tVars.farray.deqhead];
pThis->tVars.farray.deqhead++;
if (pThis->tVars.farray.deqhead == pThis->iMaxQueueSize) pThis->tVars.farray.deqhead = 0;
RETiRet;
}
static rsRetVal qDelFixedArray(qqueue_t *pThis) {
DEFiRet;
assert(pThis != NULL);
pThis->tVars.farray.head++;
if (pThis->tVars.farray.head == pThis->iMaxQueueSize) pThis->tVars.farray.head = 0;
RETiRet;
}
/* -------------------- linked list -------------------- */
static rsRetVal qConstructLinkedList(qqueue_t *pThis) {
DEFiRet;
assert(pThis != NULL);
pThis->tVars.linklist.pDeqRoot = NULL;
pThis->tVars.linklist.pDelRoot = NULL;
pThis->tVars.linklist.pLast = NULL;
qqueueChkIsDA(pThis);
RETiRet;
}
static rsRetVal qDestructLinkedList(qqueue_t __attribute__((unused)) * pThis) {
DEFiRet;
queueDrain(pThis); /* discard any remaining queue entries */
/* with the linked list type, there is nothing left to do here. The
* reason is that there are no dynamic elements for the list itself.
*/
RETiRet;
}
static rsRetVal qAddLinkedList(qqueue_t *pThis, smsg_t *pMsg) {
qLinkedList_t *pEntry;
DEFiRet;
CHKmalloc((pEntry = (qLinkedList_t *)malloc(sizeof(qLinkedList_t))));
pEntry->pNext = NULL;
pEntry->pMsg = pMsg;
if (pThis->tVars.linklist.pDelRoot == NULL) {
pThis->tVars.linklist.pDelRoot = pThis->tVars.linklist.pDeqRoot = pThis->tVars.linklist.pLast = pEntry;
} else {
pThis->tVars.linklist.pLast->pNext = pEntry;
pThis->tVars.linklist.pLast = pEntry;
}
if (pThis->tVars.linklist.pDeqRoot == NULL) {
pThis->tVars.linklist.pDeqRoot = pEntry;
}
finalize_it:
RETiRet;
}
static rsRetVal qDeqLinkedList(qqueue_t *pThis, smsg_t **ppMsg) {
qLinkedList_t *pEntry;
DEFiRet;
pEntry = pThis->tVars.linklist.pDeqRoot;
if (pEntry != NULL) {
*ppMsg = pEntry->pMsg;
pThis->tVars.linklist.pDeqRoot = pEntry->pNext;
} else {
/* Check and return NULL for linklist.pDeqRoot */
dbgprintf("qDeqLinkedList: pDeqRoot is NULL!\n");
*ppMsg = NULL;
pThis->tVars.linklist.pDeqRoot = NULL;
}
RETiRet;
}
static rsRetVal qDelLinkedList(qqueue_t *pThis) {
qLinkedList_t *pEntry;
DEFiRet;
pEntry = pThis->tVars.linklist.pDelRoot;
if (pThis->tVars.linklist.pDelRoot == pThis->tVars.linklist.pLast) {
pThis->tVars.linklist.pDelRoot = pThis->tVars.linklist.pDeqRoot = pThis->tVars.linklist.pLast = NULL;
} else {
pThis->tVars.linklist.pDelRoot = pEntry->pNext;
}
free(pEntry);
RETiRet;
}
/* -------------------- disk -------------------- */
/* The following function is used to "save" ourself from being killed by
* a fatally failed disk queue. A fatal failure is, for example, if no
* data can be read or written. In that case, the disk support is disabled,
* with all on-disk structures kept as-is as much as possible. However,
* we do not really stop or destruct the in-memory disk queue object.
* Practice has shown that this may cause races during destruction which
* themselfs can lead to segfault. So we prefer to was some ressources by
* keeping the queue active.
* Instead, the queue is switched to direct mode, so that at least
* some processing can happen. Of course, this may still have lots of
* undesired side-effects, but is probably better than aborting the
* syslogd. Note that this function *must* succeed in one way or another, as
* we can not recover from failure here. But it may emit different return
* states, which can trigger different processing in the higher layers.
* rgerhards, 2011-05-03
*/
static rsRetVal queueSwitchToEmergencyMode(qqueue_t *pThis, rsRetVal initiatingError) {
pThis->iQueueSize = 0;
pThis->nLogDeq = 0;
pThis->qType = QUEUETYPE_DIRECT;
pThis->qConstruct = qConstructDirect;
pThis->qDestruct = qDestructDirect;
/* these entry points shall not be used in direct mode
* To catch program errors, make us abort if that happens!
* rgerhards, 2013-11-05
*/
pThis->qAdd = qAddDirect;
pThis->MultiEnq = qqueueMultiEnqObjDirect;
pThis->qDel = NULL;
if (pThis->pqParent != NULL) {
DBGOPRINT((obj_t *)pThis, "DA queue is in emergency mode, disabling DA in parent\n");
pThis->pqParent->bIsDA = 0;
pThis->pqParent->pqDA = NULL;
/* This may have undesired side effects, not sure if I really evaluated
* all. So you know where to look at if you come to this point during
* troubleshooting ;) -- rgerhards, 2011-05-03
*/
}
LogError(0, initiatingError,
"fatal error on disk queue '%s', "
"emergency switch to direct mode",
obj.GetName((obj_t *)pThis));
return RS_RET_ERR_QUEUE_EMERGENCY;
}
static rsRetVal qqueueLoadPersStrmInfoFixup(strm_t *pStrm, qqueue_t __attribute__((unused)) * pThis) {
DEFiRet;
ISOBJ_TYPE_assert(pStrm, strm);
ISOBJ_TYPE_assert(pThis, qqueue);
CHKiRet(strm.SetDir(pStrm, pThis->pszSpoolDir, pThis->lenSpoolDir));
CHKiRet(strm.SetbSync(pStrm, pThis->bSyncQueueFiles));
finalize_it:
RETiRet;
}
/* The method loads the persistent queue information.
* rgerhards, 2008-01-11
*/
static rsRetVal qqueueTryLoadPersistedInfo(qqueue_t *pThis) {
DEFiRet;
strm_t *psQIF = NULL;
struct stat stat_buf;
ISOBJ_TYPE_assert(pThis, qqueue);
/* check if the file exists */
if (stat((char *)pThis->pszQIFNam, &stat_buf) == -1) {
if (errno == ENOENT) {
DBGOPRINT((obj_t *)pThis, "clean startup, no .qi file found\n");
ABORT_FINALIZE(RS_RET_FILE_NOT_FOUND);
} else {
LogError(errno, RS_RET_IO_ERROR, "queue: %s: error %d could not access .qi file",
obj.GetName((obj_t *)pThis), errno);
ABORT_FINALIZE(RS_RET_IO_ERROR);
}
}
/* If we reach this point, we have a .qi file */
CHKiRet(strm.Construct(&psQIF));
CHKiRet(strm.SettOperationsMode(psQIF, STREAMMODE_READ));
CHKiRet(strm.SetsType(psQIF, STREAMTYPE_FILE_SINGLE));
CHKiRet(strm.SetFName(psQIF, pThis->pszQIFNam, pThis->lenQIFNam));
CHKiRet(strm.ConstructFinalize(psQIF));
/* first, we try to read the property bag for ourselfs */
CHKiRet(obj.DeserializePropBag((obj_t *)pThis, psQIF));
/* then the stream objects (same order as when persisted!) */
CHKiRet(obj.Deserialize(&pThis->tVars.disk.pWrite, (uchar *)"strm", psQIF,
(rsRetVal(*)(obj_t *, void *))qqueueLoadPersStrmInfoFixup, pThis));
CHKiRet(obj.Deserialize(&pThis->tVars.disk.pReadDel, (uchar *)"strm", psQIF,
(rsRetVal(*)(obj_t *, void *))qqueueLoadPersStrmInfoFixup, pThis));
/* create a duplicate for the read "pointer". */
CHKiRet(strm.Dup(pThis->tVars.disk.pReadDel, &pThis->tVars.disk.pReadDeq));
CHKiRet(strm.SetbDeleteOnClose(pThis->tVars.disk.pReadDeq, 0)); /* deq must NOT delete the files! */
CHKiRet(strm.ConstructFinalize(pThis->tVars.disk.pReadDeq));
/* if we use a crypto provider, we need to amend the objects with it's info */
if (pThis->useCryprov) {
CHKiRet(strm.Setcryprov(pThis->tVars.disk.pWrite, &pThis->cryprov));
CHKiRet(strm.SetcryprovData(pThis->tVars.disk.pWrite, pThis->cryprovData));
CHKiRet(strm.Setcryprov(pThis->tVars.disk.pReadDeq, &pThis->cryprov));
CHKiRet(strm.SetcryprovData(pThis->tVars.disk.pReadDeq, pThis->cryprovData));
CHKiRet(strm.Setcryprov(pThis->tVars.disk.pReadDel, &pThis->cryprov));
CHKiRet(strm.SetcryprovData(pThis->tVars.disk.pReadDel, pThis->cryprovData));
}
CHKiRet(strm.SeekCurrOffs(pThis->tVars.disk.pWrite));
CHKiRet(strm.SeekCurrOffs(pThis->tVars.disk.pReadDel));
CHKiRet(strm.SeekCurrOffs(pThis->tVars.disk.pReadDeq));
/* OK, we could successfully read the file, so we now can request that it be
* deleted when we are done with the persisted information.
*/
pThis->bNeedDelQIF = 1;
LogMsg(0, RS_RET_OK, LOG_INFO,
"%s: queue files exist on disk, re-starting with "
"%d messages. This will keep the disk queue file open, details: "
"https://rainer.gerhards.net/2013/07/rsyslog-why-disk-assisted-queues-keep-a-file-open.html",
objGetName((obj_t *)pThis), getLogicalQueueSize(pThis));
finalize_it:
if (psQIF != NULL) strm.Destruct(&psQIF);
if (iRet != RS_RET_OK) {
DBGOPRINT((obj_t *)pThis, "state %d reading .qi file - can not read persisted info (if any)\n", iRet);
}
RETiRet;
}
/* disk queue constructor.
* Note that we use a file limit of 10,000,000 files. That number should never pose a
* problem. If so, I guess the user has a design issue... But of course, the code can
* always be changed (though it would probably be more appropriate to increase the
* allowed file size at this point - that should be a config setting...
* rgerhards, 2008-01-10
*/
static rsRetVal qConstructDisk(qqueue_t *pThis) {
DEFiRet;
int bRestarted = 0;
assert(pThis != NULL);
/* and now check if there is some persistent information that needs to be read in */
iRet = qqueueTryLoadPersistedInfo(pThis);
if (iRet == RS_RET_OK)
bRestarted = 1;
else if (iRet != RS_RET_FILE_NOT_FOUND)
FINALIZE;
if (bRestarted == 1) {
;
} else {
CHKiRet(strm.Construct(&pThis->tVars.disk.pWrite));
CHKiRet(strm.SetbSync(pThis->tVars.disk.pWrite, pThis->bSyncQueueFiles));
CHKiRet(strm.SetDir(pThis->tVars.disk.pWrite, pThis->pszSpoolDir, pThis->lenSpoolDir));
CHKiRet(strm.SetiMaxFiles(pThis->tVars.disk.pWrite, 10000000));
CHKiRet(strm.SettOperationsMode(pThis->tVars.disk.pWrite, STREAMMODE_WRITE));
CHKiRet(strm.SetsType(pThis->tVars.disk.pWrite, STREAMTYPE_FILE_CIRCULAR));
if (pThis->useCryprov) {
CHKiRet(strm.Setcryprov(pThis->tVars.disk.pWrite, &pThis->cryprov));
CHKiRet(strm.SetcryprovData(pThis->tVars.disk.pWrite, pThis->cryprovData));
}
CHKiRet(strm.ConstructFinalize(pThis->tVars.disk.pWrite));
CHKiRet(strm.Construct(&pThis->tVars.disk.pReadDeq));
CHKiRet(strm.SetbDeleteOnClose(pThis->tVars.disk.pReadDeq, 0));
CHKiRet(strm.SetDir(pThis->tVars.disk.pReadDeq, pThis->pszSpoolDir, pThis->lenSpoolDir));
CHKiRet(strm.SetiMaxFiles(pThis->tVars.disk.pReadDeq, 10000000));
CHKiRet(strm.SettOperationsMode(pThis->tVars.disk.pReadDeq, STREAMMODE_READ));
CHKiRet(strm.SetsType(pThis->tVars.disk.pReadDeq, STREAMTYPE_FILE_CIRCULAR));
if (pThis->useCryprov) {
CHKiRet(strm.Setcryprov(pThis->tVars.disk.pReadDeq, &pThis->cryprov));
CHKiRet(strm.SetcryprovData(pThis->tVars.disk.pReadDeq, pThis->cryprovData));
}
CHKiRet(strm.ConstructFinalize(pThis->tVars.disk.pReadDeq));
CHKiRet(strm.Construct(&pThis->tVars.disk.pReadDel));
CHKiRet(strm.SetbSync(pThis->tVars.disk.pReadDel, pThis->bSyncQueueFiles));
CHKiRet(strm.SetbDeleteOnClose(pThis->tVars.disk.pReadDel, 1));
CHKiRet(strm.SetDir(pThis->tVars.disk.pReadDel, pThis->pszSpoolDir, pThis->lenSpoolDir));
CHKiRet(strm.SetiMaxFiles(pThis->tVars.disk.pReadDel, 10000000));
CHKiRet(strm.SettOperationsMode(pThis->tVars.disk.pReadDel, STREAMMODE_READ));
CHKiRet(strm.SetsType(pThis->tVars.disk.pReadDel, STREAMTYPE_FILE_CIRCULAR));
if (pThis->useCryprov) {
CHKiRet(strm.Setcryprov(pThis->tVars.disk.pReadDel, &pThis->cryprov));
CHKiRet(strm.SetcryprovData(pThis->tVars.disk.pReadDel, pThis->cryprovData));
}
CHKiRet(strm.ConstructFinalize(pThis->tVars.disk.pReadDel));
CHKiRet(strm.SetFName(pThis->tVars.disk.pWrite, pThis->pszFilePrefix, pThis->lenFilePrefix));
CHKiRet(strm.SetFName(pThis->tVars.disk.pReadDeq, pThis->pszFilePrefix, pThis->lenFilePrefix));
CHKiRet(strm.SetFName(pThis->tVars.disk.pReadDel, pThis->pszFilePrefix, pThis->lenFilePrefix));
}
/* now we set (and overwrite in case of a persisted restart) some parameters which
* should always reflect the current configuration variables. Be careful by doing so,
* for example file name generation must not be changed as that would break the
* ability to read existing queue files. -- rgerhards, 2008-01-12
*/
CHKiRet(strm.SetiMaxFileSize(pThis->tVars.disk.pWrite, pThis->iMaxFileSize));
CHKiRet(strm.SetiMaxFileSize(pThis->tVars.disk.pReadDeq, pThis->iMaxFileSize));
CHKiRet(strm.SetiMaxFileSize(pThis->tVars.disk.pReadDel, pThis->iMaxFileSize));
finalize_it:
RETiRet;
}
static rsRetVal qDestructDisk(qqueue_t *pThis) {
DEFiRet;
assert(pThis != NULL);
free(pThis->pszQIFNam);
if (pThis->tVars.disk.pWrite != NULL) {
int64 currOffs;
strm.GetCurrOffset(pThis->tVars.disk.pWrite, &currOffs);
if (currOffs == 0) {
/* if no data is present, we can (and must!) delete this
* file. Else we can leave garbagge after termination.
*/
strm.SetbDeleteOnClose(pThis->tVars.disk.pWrite, 1);
}
strm.Destruct(&pThis->tVars.disk.pWrite);
}
if (pThis->tVars.disk.pReadDeq != NULL) strm.Destruct(&pThis->tVars.disk.pReadDeq);
if (pThis->tVars.disk.pReadDel != NULL) strm.Destruct(&pThis->tVars.disk.pReadDel);
RETiRet;
}
static rsRetVal ATTR_NONNULL(1, 2) qAddDisk(qqueue_t *const pThis, smsg_t *pMsg) {
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
ISOBJ_TYPE_assert(pMsg, msg);
number_t nWriteCount;
const int oldfile = strmGetCurrFileNum(pThis->tVars.disk.pWrite);
CHKiRet(strm.SetWCntr(pThis->tVars.disk.pWrite, &nWriteCount));
CHKiRet((objSerialize(pMsg))(pMsg, pThis->tVars.disk.pWrite));
CHKiRet(strm.Flush(pThis->tVars.disk.pWrite));
CHKiRet(strm.SetWCntr(pThis->tVars.disk.pWrite, NULL)); /* no more counting for now... */
pThis->tVars.disk.sizeOnDisk += nWriteCount;
/* we have enqueued the user element to disk. So we now need to destruct
* the in-memory representation. The instance will be re-created upon
* dequeue. -- rgerhards, 2008-07-09
*/
msgDestruct(&pMsg);
DBGOPRINT((obj_t *)pThis, "write wrote %lld octets to disk, queue disk size now %lld octets, EnqOnly:%d\n",
nWriteCount, pThis->tVars.disk.sizeOnDisk, pThis->bEnqOnly);
/* Did we have a change in the on-disk file? If so, we
* should do a "robustness sync" of the .qi file to guard
* against the most harsh consequences of kill -9 and power off.
*/
int newfile;
newfile = strmGetCurrFileNum(pThis->tVars.disk.pWrite);
if (newfile != oldfile) {
DBGOPRINT((obj_t *)pThis,
"current to-be-written-to file has changed from "
"number %d to number %d - requiring a .qi write for robustness\n",
oldfile, newfile);
pThis->tVars.disk.nForcePersist = 2;
}
finalize_it:
RETiRet;
}
static rsRetVal msgConstructFromVoid(void **ppThis) {
return msgConstructForDeserializer((smsg_t **)ppThis);
}
static rsRetVal msgDeserializeFromVoid(void *pObj, strm_t *pStrm) {
return MsgDeserialize((smsg_t *)pObj, pStrm);
}
static rsRetVal qDeqDisk(qqueue_t *pThis, smsg_t **ppMsg) {
DEFiRet;
iRet = objDeserializeWithMethods(ppMsg, (uchar *)"msg", sizeof("msg") - 1, pThis->tVars.disk.pReadDeq, NULL, NULL,
msgConstructFromVoid, NULL, msgDeserializeFromVoid);
if (iRet != RS_RET_OK) {
LogError(0, iRet, "%s: qDeqDisk error happened at around offset %lld", obj.GetName((obj_t *)pThis),
(long long)pThis->tVars.disk.pReadDeq->iCurrOffs);
}
RETiRet;
}
/* -------------------- direct (no queueing) -------------------- */
static rsRetVal qConstructDirect(qqueue_t __attribute__((unused)) * pThis) {
return RS_RET_OK;
}
static rsRetVal qDestructDirect(qqueue_t __attribute__((unused)) * pThis) {
return RS_RET_OK;
}
static rsRetVal qAddDirectWithWti(qqueue_t *pThis, smsg_t *pMsg, wti_t *pWti) {
batch_t singleBatch;
batch_obj_t batchObj;
batch_state_t batchState = BATCH_STATE_RDY;
DEFiRet;
// TODO: init batchObj (states _OK and new fields -- CHECK)
assert(pThis != NULL);
/* calling the consumer is quite different here than it is from a worker thread */
/* we need to provide the consumer's return value back to the caller because in direct
* mode the consumer probably has a lot to convey (which get's lost in the other modes
* because they are asynchronous. But direct mode is deliberately synchronous.
* rgerhards, 2008-02-12
* We use our knowledge about the batch_t structure below, but without that, we
* pay a too-large performance toll... -- rgerhards, 2009-04-22
*/
memset(&batchObj, 0, sizeof(batch_obj_t));
memset(&singleBatch, 0, sizeof(batch_t));
batchObj.pMsg = pMsg;
singleBatch.nElem = 1; /* there always is only one in direct mode */
singleBatch.pElem = &batchObj;
singleBatch.eltState = &batchState;
iRet = pThis->pConsumer(pThis->pAction, &singleBatch, pWti);
msgDestruct(&pMsg);
RETiRet;
}
/* this is called if we do not have a pWti. This currently only happens
* when we are called from a main queue in direct mode. If so, we need
* to obtain a dummy pWti.
*/
static rsRetVal qAddDirect(qqueue_t *pThis, smsg_t *pMsg) {
wti_t *pWti;
DEFiRet;
pWti = wtiGetDummy();
pWti->pbShutdownImmediate = &pThis->bShutdownImmediate;
iRet = qAddDirectWithWti(pThis, pMsg, pWti);
RETiRet;
}
/* --------------- end type-specific handlers -------------------- */
/* generic code to add a queue entry
* We use some specific code to most efficiently support direct mode
* queues. This is justified in spite of the gain and the need to do some
* things truely different. -- rgerhards, 2008-02-12
*/
static rsRetVal qqueueAdd(qqueue_t *pThis, smsg_t *pMsg) {
DEFiRet;
assert(pThis != NULL);
static int msgCnt = 0;
if (pThis->iSmpInterval > 0) {
msgCnt = (msgCnt + 1) % (pThis->iSmpInterval);
if (msgCnt != 0) {
msgDestruct(&pMsg);
goto finalize_it;
}
}
CHKiRet(pThis->qAdd(pThis, pMsg));
if (pThis->qType != QUEUETYPE_DIRECT) {
ATOMIC_INC(&pThis->iQueueSize, &pThis->mutQueueSize);
#ifdef ENABLE_IMDIAG
#ifdef HAVE_ATOMIC_BUILTINS
/* mutex is never used due to conditional compilation */
ATOMIC_INC(&iOverallQueueSize, &NULL);
#else
++iOverallQueueSize; /* racy, but we can't wait for a mutex! */
#endif
#endif
}
finalize_it:
RETiRet;
}
/* generic code to dequeue a queue entry
*/
static rsRetVal qqueueDeq(qqueue_t *pThis, smsg_t **ppMsg) {
DEFiRet;
assert(pThis != NULL);
/* we do NOT abort if we encounter an error, because otherwise the queue
* will not be decremented, what will most probably result in an endless loop.
* If we decrement, however, we may lose a message. But that is better than
* losing the whole process because it loops... -- rgerhards, 2008-01-03
*/
iRet = pThis->qDeq(pThis, ppMsg);
ATOMIC_INC(&pThis->nLogDeq, &pThis->mutLogDeq);
DBGOPRINT((obj_t *)pThis, "entry deleted, size now log %d, phys %d entries\n", getLogicalQueueSize(pThis),
getPhysicalQueueSize(pThis));
RETiRet;
}
/* Try to shut down regular and DA queue workers, within the queue timeout
* period. That means processing continues as usual. This is the expected
* usual case, where during shutdown those messages remaining are being
* processed. At this point, it is acceptable that the queue can not be
* fully depleted, that case is handled in the next step. During this phase,
* we first shut down the main queue DA worker to prevent new data to arrive
* at the DA queue, and then we ask the regular workers of both the Regular
* and DA queue to try complete processing.
* rgerhards, 2009-10-14
*/
static rsRetVal ATTR_NONNULL(1) tryShutdownWorkersWithinQueueTimeout(qqueue_t *const pThis) {
struct timespec tTimeout;
rsRetVal iRetLocal;
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
assert(pThis->pqParent == NULL); /* detect invalid calling sequence */
if (pThis->bIsDA) {
/* We need to lock the mutex, as otherwise we may have a race that prevents
* us from awaking the DA worker. */
d_pthread_mutex_lock(pThis->mut);
/* tell regular queue DA worker to stop shuffling messages to DA queue... */
DBGOPRINT((obj_t *)pThis, "setting EnqOnly mode for DA worker\n");
pThis->pqDA->bEnqOnly = 1;
wtpSetState(pThis->pWtpDA, wtpState_SHUTDOWN_IMMEDIATE);
wtpAdviseMaxWorkers(pThis->pWtpDA, 1, DENY_WORKER_START_DURING_SHUTDOWN);
DBGOPRINT((obj_t *)pThis, "awoke DA worker, told it to shut down.\n");
/* also tell the DA queue worker to shut down, so that it already knows... */
wtpSetState(pThis->pqDA->pWtpReg, wtpState_SHUTDOWN);
wtpAdviseMaxWorkers(pThis->pqDA->pWtpReg, 1, DENY_WORKER_START_DURING_SHUTDOWN);
/* awake its lone worker */
DBGOPRINT((obj_t *)pThis, "awoke DA queue regular worker, told it to shut down when done.\n");
d_pthread_mutex_unlock(pThis->mut);
}
/* first calculate absolute timeout - we need the absolute value here, because we need to coordinate
* shutdown of both the regular and DA queue on *the same* timeout.
*/
timeoutComp(&tTimeout, pThis->toQShutdown);
DBGOPRINT((obj_t *)pThis, "trying shutdown of regular workers\n");
iRetLocal = wtpShutdownAll(pThis->pWtpReg, wtpState_SHUTDOWN, &tTimeout);
if (iRetLocal == RS_RET_TIMED_OUT) {
LogMsg(0, RS_RET_TIMED_OUT, LOG_INFO,
"%s: regular queue shutdown timed out on primary queue "
"(this is OK, timeout was %d)",
objGetName((obj_t *)pThis), pThis->toQShutdown);
} else {
DBGOPRINT((obj_t *)pThis, "regular queue workers shut down.\n");
}
/* OK, the worker for the regular queue is processed, on the the DA queue regular worker. */
if (pThis->pqDA != NULL) {
DBGOPRINT((obj_t *)pThis, "we have a DA queue (0x%lx), requesting its shutdown.\n", qqueueGetID(pThis->pqDA));
/* we use the same absolute timeout as above, so we do not use more than the configured
* timeout interval!
*/
DBGOPRINT((obj_t *)pThis, "trying shutdown of regular worker of DA queue\n");
iRetLocal = wtpShutdownAll(pThis->pqDA->pWtpReg, wtpState_SHUTDOWN, &tTimeout);
if (iRetLocal == RS_RET_TIMED_OUT) {
LogMsg(0, RS_RET_TIMED_OUT, LOG_INFO,
"%s: regular queue shutdown timed out on DA queue (this is OK, "
"timeout was %d)",
objGetName((obj_t *)pThis), pThis->toQShutdown);
} else {
DBGOPRINT((obj_t *)pThis, "DA queue worker shut down.\n");
}
}
RETiRet;
}
/* Try to shut down regular and DA queue workers, within the action timeout
* period. This aborts processing, but at the end of the current action, in
* a well-defined manner. During this phase, we terminate all three worker
* pools, including the regular queue DA worker if it not yet has terminated.
* Not finishing processing all messages is OK (and expected) at this stage
* (they may be preserved later, depending * on bSaveOnShutdown setting).
* rgerhards, 2009-10-14
*/
static rsRetVal tryShutdownWorkersWithinActionTimeout(qqueue_t *pThis) {
struct timespec tTimeout;
rsRetVal iRetLocal;
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
assert(pThis->pqParent == NULL); /* detect invalid calling sequence */
/* instruct workers to finish ASAP, even if still work exists */
DBGOPRINT((obj_t *)pThis, "trying to shutdown workers within Action Timeout");
DBGOPRINT((obj_t *)pThis, "setting EnqOnly mode\n");
pThis->bEnqOnly = 1;
pThis->bShutdownImmediate = 1;
/* now DA queue */
if (pThis->bIsDA) {
pThis->pqDA->bEnqOnly = 1;
pThis->pqDA->bShutdownImmediate = 1;
}
/* now give the queue workers a last chance to gracefully shut down (based on action timeout setting) */
timeoutComp(&tTimeout, pThis->toActShutdown);
DBGOPRINT((obj_t *)pThis, "trying immediate shutdown of regular workers (if any)\n");
iRetLocal = wtpShutdownAll(pThis->pWtpReg, wtpState_SHUTDOWN_IMMEDIATE, &tTimeout);
if (iRetLocal == RS_RET_TIMED_OUT) {
LogMsg(0, RS_RET_TIMED_OUT, LOG_INFO,
"%s: immediate shutdown timed out on primary queue (this is acceptable and "
"triggers cancellation)",
objGetName((obj_t *)pThis));
} else if (iRetLocal != RS_RET_OK) {
LogMsg(0, iRetLocal, LOG_WARNING,
"%s: potential internal error: unexpected return state after trying "
"immediate shutdown of the primary queue in disk save mode. "
"Continuing, but results are unpredictable",
objGetName((obj_t *)pThis));
}
if (pThis->pqDA != NULL) {
/* and now the same for the DA queue */
DBGOPRINT((obj_t *)pThis, "trying immediate shutdown of DA queue workers\n");
iRetLocal = wtpShutdownAll(pThis->pqDA->pWtpReg, wtpState_SHUTDOWN_IMMEDIATE, &tTimeout);
if (iRetLocal == RS_RET_TIMED_OUT) {
LogMsg(0, RS_RET_TIMED_OUT, LOG_INFO,
"%s: immediate shutdown timed out on DA queue (this is acceptable and "
"triggers cancellation)",
objGetName((obj_t *)pThis));
} else if (iRetLocal != RS_RET_OK) {
LogMsg(0, iRetLocal, LOG_WARNING,
"%s: potential internal error: unexpected return state after trying "
"immediate shutdown of the DA queue in disk save mode. "
"Continuing, but results are unpredictable",
objGetName((obj_t *)pThis));
}
/* and now we need to terminate the DA worker itself. We always grant it a 100ms timeout,
* which should be sufficient and usually not be required (it is expected to have finished
* long before while we were processing the queue timeout in shutdown phase 1).
* rgerhards, 2009-10-14
*/
timeoutComp(&tTimeout, 100);
DBGOPRINT((obj_t *)pThis, "trying regular shutdown of main queue DA worker pool\n");
iRetLocal = wtpShutdownAll(pThis->pWtpDA, wtpState_SHUTDOWN_IMMEDIATE, &tTimeout);
if (iRetLocal == RS_RET_TIMED_OUT) {
LogMsg(0, iRetLocal, LOG_WARNING,
"%s: shutdown timed out on main queue DA worker pool "
"(this is not good, but possibly OK)",
objGetName((obj_t *)pThis));
} else {
DBGOPRINT((obj_t *)pThis, "main queue DA worker pool shut down.\n");
}
}
RETiRet;
}
/* This function cancels all remaining regular workers for both the main and the DA
* queue.
* rgerhards, 2009-05-29
*/
static rsRetVal cancelWorkers(qqueue_t *pThis) {
rsRetVal iRetLocal;
DEFiRet;
assert(pThis->qType != QUEUETYPE_DIRECT);
/* Now queue workers should have terminated. If not, we need to cancel them as we have applied
* all timeout setting. If any worker in any queue still executes, its consumer is possibly
* long-running and cancelling is the only way to get rid of it.
*/
DBGOPRINT((obj_t *)pThis, "checking to see if we need to cancel any worker threads of the primary queue\n");
iRetLocal = wtpCancelAll(pThis->pWtpReg, objGetName((obj_t *)pThis));
/* ^-- returns immediately if all threads already have terminated */
if (iRetLocal != RS_RET_OK) {
DBGOPRINT((obj_t *)pThis,
"unexpected iRet state %d trying to cancel primary queue worker "
"threads, continuing, but results are unpredictable\n",
iRetLocal);
}
/* ... and now the DA queue, if it exists (should always be after the primary one) */
if (pThis->pqDA != NULL) {
DBGOPRINT((obj_t *)pThis,
"checking to see if we need to cancel any worker threads of "
"the DA queue\n");
iRetLocal = wtpCancelAll(pThis->pqDA->pWtpReg, objGetName((obj_t *)pThis));
/* returns immediately if all threads already have terminated */
if (iRetLocal != RS_RET_OK) {
DBGOPRINT((obj_t *)pThis,
"unexpected iRet state %d trying to cancel DA queue worker "
"threads, continuing, but results are unpredictable\n",
iRetLocal);
}
/* finally, we cancel the main queue's DA worker pool, if it still is running. It may be
* restarted later to persist the queue. But we stop it, because otherwise we get into
* big trouble when resetting the logical dequeue pointer. This operation can only be
* done when *no* worker is running. So time for a shutdown... -- rgerhards, 2009-05-28
*/
DBGOPRINT((obj_t *)pThis, "checking to see if main queue DA worker pool needs to be cancelled\n");
wtpCancelAll(pThis->pWtpDA, objGetName((obj_t *)pThis));
/* returns immediately if all threads already have terminated */
}
RETiRet;
}
/* This function shuts down all worker threads and waits until they
* have terminated. If they timeout, they are cancelled.
* rgerhards, 2008-01-24
* Please note that this function shuts down BOTH the parent AND the child queue
* in DA case. This is necessary because their timeouts are tightly coupled. Most
* importantly, the timeouts would be applied twice (or logic be extremely
* complex) if each would have its own shutdown. The function does not self check
* this condition - the caller must make sure it is not called with a parent.
* rgerhards, 2009-05-26: we do NO longer persist the queue here if bSaveOnShutdown
* is set. This must be handled by the caller. Not doing that cleans up the queue
* shutdown considerably. Also, older engines had a potential hang condition when
* the DA queue was already started and the DA worker configured for infinite
* retries and the action was during retry processing. This was a design issue,
* which is solved as of now. Note that the shutdown now may take a little bit
* longer, because we no longer can persist the queue in parallel to waiting
* on worker timeouts.
*/
rsRetVal ATTR_NONNULL(1) qqueueShutdownWorkers(qqueue_t *const pThis) {
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
if (pThis->qType == QUEUETYPE_DIRECT) {
FINALIZE;
}
assert(pThis->pqParent == NULL); /* detect invalid calling sequence */
DBGOPRINT((obj_t *)pThis, "initiating worker thread shutdown sequence %p\n", pThis);
CHKiRet(tryShutdownWorkersWithinQueueTimeout(pThis));
pthread_mutex_lock(pThis->mut);
int physQueueSize;
physQueueSize = getPhysicalQueueSize(pThis);
pthread_mutex_unlock(pThis->mut);
if (physQueueSize > 0) {
CHKiRet(tryShutdownWorkersWithinActionTimeout(pThis));
}
CHKiRet(cancelWorkers(pThis));
/* ... finally ... all worker threads have terminated :-)
* Well, more precisely, they *are in termination*. Some cancel cleanup handlers
* may still be running. Note that the main queue's DA worker may still be running.
*/
DBGOPRINT((obj_t *)pThis, "worker threads terminated, remaining queue size log %d, phys %d.\n",
getLogicalQueueSize(pThis), getPhysicalQueueSize(pThis));
finalize_it:
RETiRet;
}
/* Constructor for the queue object
* This constructs the data structure, but does not yet start the queue. That
* is done by queueStart(). The reason is that we want to give the caller a chance
* to modify some parameters before the queue is actually started.
*/
rsRetVal qqueueConstruct(qqueue_t **ppThis,
queueType_t qType,
int iWorkerThreads,
int iMaxQueueSize,
rsRetVal (*pConsumer)(void *, batch_t *, wti_t *)) {
DEFiRet;
qqueue_t *pThis;
const uchar *const workDir = glblGetWorkDirRaw(ourConf);
assert(ppThis != NULL);
assert(pConsumer != NULL);
assert(iWorkerThreads >= 0);
CHKmalloc(pThis = (qqueue_t *)calloc(1, sizeof(qqueue_t)));
/* we have an object, so let's fill the properties */
objConstructSetObjInfo(pThis);
if (workDir != NULL) {
if ((pThis->pszSpoolDir = ustrdup(workDir)) == NULL) ABORT_FINALIZE(RS_RET_OUT_OF_MEMORY);
pThis->lenSpoolDir = ustrlen(pThis->pszSpoolDir);
}
/* set some water marks so that we have useful defaults if none are set specifically */
pThis->iFullDlyMrk = -1;
pThis->iLightDlyMrk = -1;
pThis->iMaxFileSize = 1024 * 1024; /* default is 1 MiB */
pThis->iQueueSize = 0;
pThis->nLogDeq = 0;
pThis->useCryprov = 0;
pThis->takeFlowCtlFromMsg = 0;
pThis->iMaxQueueSize = iMaxQueueSize;
pThis->pConsumer = pConsumer;
pThis->iNumWorkerThreads = iWorkerThreads;
pThis->iDeqtWinToHr = 25; /* disable time-windowed dequeuing by default */
pThis->iDeqBatchSize = 8; /* conservative default, should still provide good performance */
pThis->iMinDeqBatchSize = 0; /* conservative default, should still provide good performance */
pThis->isRunning = 0;
pThis->pszFilePrefix = NULL;
pThis->qType = qType;
INIT_ATOMIC_HELPER_MUT(pThis->mutQueueSize);
INIT_ATOMIC_HELPER_MUT(pThis->mutLogDeq);
finalize_it:
OBJCONSTRUCT_CHECK_SUCCESS_AND_CLEANUP
RETiRet;
}
/* set default inside queue object suitable for action queues.
* This shall be called directly after queue construction. This functions has
* been added in support of the new v6 config system. It expect properly pre-initialized
* objects, but we need to differentiate between ruleset main and action queues.
* In order to avoid unnecessary complexity, we provide the necessary defaults
* via specific function calls.
*/
void qqueueSetDefaultsActionQueue(qqueue_t *pThis) {
pThis->qType = QUEUETYPE_DIRECT; /* type of the main message queue above */
pThis->iMaxQueueSize = 1000; /* size of the main message queue above */
pThis->iDeqBatchSize = 128; /* default batch size */
pThis->iMinDeqBatchSize = 0;
pThis->toMinDeqBatchSize = 1000;
pThis->iHighWtrMrk = -1; /* high water mark for disk-assisted queues */
pThis->iLowWtrMrk = -1; /* low water mark for disk-assisted queues */
pThis->iDiscardMrk = -1; /* begin to discard messages */
pThis->iDiscardSeverity = 8; /* turn off */
pThis->iNumWorkerThreads = 1; /* number of worker threads for the mm queue above */
pThis->iMaxFileSize = 1024 * 1024;
pThis->iPersistUpdCnt = 0; /* persist queue info every n updates */
pThis->bSyncQueueFiles = 0;
pThis->toQShutdown = loadConf->globals.actq_dflt_toQShutdown; /* queue shutdown */
pThis->toActShutdown = loadConf->globals.actq_dflt_toActShutdown; /* action shutdown (in phase 2) */
pThis->toEnq = loadConf->globals.actq_dflt_toEnq; /* timeout for queue enque */
pThis->toWrkShutdown = loadConf->globals.actq_dflt_toWrkShutdown; /* timeout for worker thread shutdown */
pThis->iMinMsgsPerWrkr = -1; /* minimum messages per worker needed to start a new one */
pThis->bSaveOnShutdown = 1; /* save queue on shutdown (when DA enabled)? */
pThis->sizeOnDiskMax = 0; /* unlimited */
pThis->iDeqSlowdown = 0;
pThis->iDeqtWinFromHr = 0;
pThis->iDeqtWinToHr = 25; /* disable time-windowed dequeuing by default */
pThis->iSmpInterval = 0; /* disable sampling */
}
/* set defaults inside queue object suitable for main/ruleset queues.
* See queueSetDefaultsActionQueue() for more details and background.
*/
void qqueueSetDefaultsRulesetQueue(qqueue_t *pThis) {
pThis->qType = QUEUETYPE_FIXED_ARRAY; /* type of the main message queue above */
pThis->iMaxQueueSize = 50000; /* size of the main message queue above */
pThis->iDeqBatchSize = 1024; /* default batch size */
pThis->iMinDeqBatchSize = 0;
pThis->toMinDeqBatchSize = 1000;
pThis->iHighWtrMrk = -1; /* high water mark for disk-assisted queues */
pThis->iLowWtrMrk = -1; /* low water mark for disk-assisted queues */
pThis->iDiscardMrk = -1; /* begin to discard messages */
pThis->iDiscardSeverity = 8; /* turn off */
pThis->iNumWorkerThreads = 1; /* number of worker threads for the mm queue above */
pThis->iMaxFileSize = 16 * 1024 * 1024;
pThis->iPersistUpdCnt = 0; /* persist queue info every n updates */
pThis->bSyncQueueFiles = 0;
pThis->toQShutdown = ourConf->globals.ruleset_dflt_toQShutdown;
pThis->toActShutdown = ourConf->globals.ruleset_dflt_toActShutdown;
pThis->toEnq = ourConf->globals.ruleset_dflt_toEnq;
pThis->toWrkShutdown = ourConf->globals.ruleset_dflt_toWrkShutdown;
pThis->iMinMsgsPerWrkr = -1; /* minimum messages per worker needed to start a new one */
pThis->bSaveOnShutdown = 1; /* save queue on shutdown (when DA enabled)? */
pThis->sizeOnDiskMax = 0; /* unlimited */
pThis->iDeqSlowdown = 0;
pThis->iDeqtWinFromHr = 0;
pThis->iDeqtWinToHr = 25; /* disable time-windowed dequeuing by default */
pThis->iSmpInterval = 0; /* disable sampling */
}
/* This function checks if the provided message shall be discarded and does so, if needed.
* In DA mode, we do not discard any messages as we assume the disk subsystem is fast enough to
* provide real-time creation of spool files.
* Note: cached copies of iQueueSize is provided so that no mutex locks are required.
* The caller must have obtained them while the mutex was locked. Of course, these values may no
* longer be current, but that is OK for the discard check. At worst, the message is either processed
* or discarded when it should not have been. As discarding is in itself somewhat racy and erratic,
* that is no problems for us. This function MUST NOT lock the queue mutex, it could result in
* deadlocks!
* If the message is discarded, it can no longer be processed by the caller. So be sure to check
* the return state!
* rgerhards, 2008-01-24
*/
static int qqueueChkDiscardMsg(qqueue_t *pThis, int iQueueSize, smsg_t *pMsg) {
DEFiRet;
rsRetVal iRetLocal;
int iSeverity;
ISOBJ_TYPE_assert(pThis, qqueue);
if (pThis->iDiscardMrk > 0 && iQueueSize >= pThis->iDiscardMrk) {
iRetLocal = MsgGetSeverity(pMsg, &iSeverity);
if (iRetLocal == RS_RET_OK && iSeverity >= pThis->iDiscardSeverity) {
DBGOPRINT((obj_t *)pThis, "queue nearly full (%d entries), discarded severity %d message\n", iQueueSize,
iSeverity);
STATSCOUNTER_INC(pThis->ctrNFDscrd, pThis->mutCtrNFDscrd);
msgDestruct(&pMsg);
ABORT_FINALIZE(RS_RET_QUEUE_FULL);
} else {
DBGOPRINT((obj_t *)pThis,
"queue nearly full (%d entries), but could not drop msg "
"(iRet: %d, severity %d)\n",
iQueueSize, iRetLocal, iSeverity);
}
}
finalize_it:
RETiRet;
}
/* Finally remove n elements from the queue store.
*/
static rsRetVal ATTR_NONNULL(1) DoDeleteBatchFromQStore(qqueue_t *const pThis, const int nElem) {
int i;
off64_t bytesDel = 0; /* keep CLANG static anaylzer happy */
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
/* now send delete request to storage driver */
if (pThis->qType == QUEUETYPE_DISK) {
strmMultiFileSeek(pThis->tVars.disk.pReadDel, pThis->tVars.disk.deqFileNumOut, pThis->tVars.disk.deqOffs,
&bytesDel);
/* We need to correct the on-disk file size. This time it is a bit tricky:
* we free disk space only upon file deletion. So we need to keep track of what we
* have read until we get an out-offset that is lower than the in-offset (which
* indicates file change). Then, we can subtract the whole thing from the on-disk
* size. -- rgerhards, 2008-01-30
*/
if (bytesDel != 0) {
pThis->tVars.disk.sizeOnDisk -= bytesDel;
DBGOPRINT((obj_t *)pThis,
"doDeleteBatch: a %lld octet file has been deleted, now %lld "
"octets disk space used\n",
(long long)bytesDel, pThis->tVars.disk.sizeOnDisk);
/* awake possibly waiting enq process */
pthread_cond_signal(&pThis->notFull); /* we hold the mutex while we are in here! */
}
} else { /* memory queue */
for (i = 0; i < nElem; ++i) {
pThis->qDel(pThis);
}
}
/* iQueueSize is not decremented by qDel(), so we need to do it ourselves */
ATOMIC_SUB(&pThis->iQueueSize, nElem, &pThis->mutQueueSize);
#ifdef ENABLE_IMDIAG
#ifdef HAVE_ATOMIC_BUILTINS
/* mutex is never used due to conditional compilation */
ATOMIC_SUB(&iOverallQueueSize, nElem, &NULL);
#else
iOverallQueueSize -= nElem; /* racy, but we can't wait for a mutex! */
#endif
#endif
ATOMIC_SUB(&pThis->nLogDeq, nElem, &pThis->mutLogDeq);
DBGPRINTF("doDeleteBatch: delete batch from store, new sizes: log %d, phys %d\n", getLogicalQueueSize(pThis),
getPhysicalQueueSize(pThis));
++pThis->deqIDDel; /* one more batch dequeued */
if ((pThis->qType == QUEUETYPE_DISK) && (bytesDel != 0)) {
qqueuePersist(pThis, QUEUE_CHECKPOINT); /* robustness persist .qi file */
}
RETiRet;
}
typedef enum tdlPhase_e { TDL_EMPTY, TDL_PROCESS_HEAD, TDL_QUEUE } tdlPhase_t;
/**
* Remove messages from the physical queue store that are fully processed.
*
* Deletion proceeds through a small state machine governed by the
* to-delete list:
* - TDL_EMPTY: list is empty, delete the current batch directly.
* - TDL_PROCESS_HEAD: pending head elements are removed first, then the
* current batch.
* - TDL_QUEUE: current batch cannot be deleted and is queued for later.
*
* The dequeue identifier advances strictly monotonically, ensuring
* deterministic order and proper resource release for both disk and
* memory queue implementations.
*/
static rsRetVal DeleteBatchFromQStore(qqueue_t *pThis, batch_t *pBatch) {
toDeleteLst_t *pTdl;
qDeqID nextID;
tdlPhase_t phase;
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
assert(pBatch != NULL);
dbgprintf("rger: deleteBatchFromQStore, nElem %d\n", (int)pBatch->nElem);
pTdl = tdlPeek(pThis); /* get current head element */
if (pTdl == NULL) {
phase = TDL_EMPTY;
} else if (pBatch->deqID == pThis->deqIDDel) {
phase = TDL_PROCESS_HEAD;
} else {
phase = TDL_QUEUE;
}
switch (phase) {
case TDL_EMPTY:
DoDeleteBatchFromQStore(pThis, pBatch->nElem);
break;
case TDL_PROCESS_HEAD:
nextID = pThis->deqIDDel;
while ((pTdl = tdlPeek(pThis)) != NULL && pTdl->deqID == nextID) {
DoDeleteBatchFromQStore(pThis, pTdl->nElemDeq);
tdlPop(pThis);
++nextID;
}
assert(pThis->deqIDDel == nextID);
/* old entries deleted, now delete current ones... */
DoDeleteBatchFromQStore(pThis, pBatch->nElem);
break;
case TDL_QUEUE:
/* cannot delete, insert into to-delete list */
DBGPRINTF("not at head of to-delete list, enqueue %d\n", (int)pBatch->deqID);
CHKiRet(tdlAdd(pThis, pBatch->deqID, pBatch->nElem));
break;
default:
/* all phases should be handled above. */
assert(0 && "unhandled tdlPhase_t");
break;
}
finalize_it:
RETiRet;
}
/* Delete a batch of processed user objects from the queue, which includes
* destructing the objects themself. Any entries not marked as finally
* processed are enqueued again. The new enqueue is necessary because we have a
* rgerhards, 2009-05-13
*/
static rsRetVal DeleteProcessedBatch(qqueue_t *pThis, batch_t *pBatch) {
int i;
smsg_t *pMsg;
int nEnqueued = 0;
rsRetVal localRet;
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
assert(pBatch != NULL);
for (i = 0; i < pBatch->nElem; ++i) {
pMsg = pBatch->pElem[i].pMsg;
DBGPRINTF("DeleteProcessedBatch: etry %d state %d\n", i, pBatch->eltState[i]);
if (pBatch->eltState[i] == BATCH_STATE_RDY || pBatch->eltState[i] == BATCH_STATE_SUB) {
localRet = doEnqSingleObj(pThis, eFLOWCTL_NO_DELAY, MsgAddRef(pMsg));
++nEnqueued;
if (localRet != RS_RET_OK) {
DBGPRINTF(
"DeleteProcessedBatch: error %d re-enqueuing unprocessed "
"data element - discarded\n",
localRet);
}
}
msgDestruct(&pMsg);
}
DBGPRINTF("DeleteProcessedBatch: we deleted %d objects and enqueued %d objects\n", i - nEnqueued, nEnqueued);
if (nEnqueued > 0) qqueueChkPersist(pThis, nEnqueued);
iRet = DeleteBatchFromQStore(pThis, pBatch);
pBatch->nElem = pBatch->nElemDeq = 0; /* reset batch */ // TODO: more fine init, new fields! 2010-06-14
RETiRet;
}
/* dequeue as many user pointers as are available, until we hit the configured
* upper limit of pointers. Note that this function also deletes all processed
* objects from the previous batch. However, it is perfectly valid that the
* previous batch contained NO objects at all. For example, this happens
* immediately after system startup or when a queue was exhausted and the queue
* worker needed to wait for new data.
* This must only be called when the queue mutex is LOOKED, otherwise serious
* malfunction will happen.
*/
static rsRetVal ATTR_NONNULL() DequeueConsumableElements(qqueue_t *const pThis,
wti_t *const pWti,
int *const piRemainingQueueSize,
int *const pSkippedMsgs) {
int nDequeued;
int nDiscarded;
int nDeleted;
int iQueueSize;
int keep_running = 1;
struct timespec timeout;
smsg_t *pMsg;
rsRetVal localRet;
DEFiRet;
nDeleted = pWti->batch.nElemDeq;
DeleteProcessedBatch(pThis, &pWti->batch);
nDequeued = nDiscarded = 0;
if (pThis->qType == QUEUETYPE_DISK) {
pThis->tVars.disk.deqFileNumIn = strmGetCurrFileNum(pThis->tVars.disk.pReadDeq);
}
/* work-around clang static analyzer false positive, we need a const value */
const int iMinDeqBatchSize = pThis->iMinDeqBatchSize;
if (iMinDeqBatchSize > 0) {
timeoutComp(&timeout, pThis->toMinDeqBatchSize); /* get absolute timeout */
}
while ((iQueueSize = getLogicalQueueSize(pThis)) > 0 && nDequeued < pThis->iDeqBatchSize) {
int rd_fd = -1;
int64_t rd_offs = 0;
int wr_fd = -1;
int64_t wr_offs = 0;
if (pThis->tVars.disk.pReadDeq != NULL) {
rd_fd = strmGetCurrFileNum(pThis->tVars.disk.pReadDeq);
rd_offs = pThis->tVars.disk.pReadDeq->iCurrOffs;
}
if (pThis->tVars.disk.pWrite != NULL) {
wr_fd = strmGetCurrFileNum(pThis->tVars.disk.pWrite);
wr_offs = pThis->tVars.disk.pWrite->iCurrOffs;
}
if (rd_fd != -1 && rd_fd == wr_fd && rd_offs == wr_offs) {
DBGPRINTF(
"problem on disk queue '%s': "
//"queue size log %d, phys %d, but rd_fd=wr_rd=%d and offs=%lld\n",
"queue size log %d, phys %d, but rd_fd=wr_rd=%d and offs=%" PRId64 "\n",
obj.GetName((obj_t *)pThis), iQueueSize, pThis->iQueueSize, rd_fd, rd_offs);
*pSkippedMsgs = iQueueSize;
#ifdef ENABLE_IMDIAG
iOverallQueueSize -= iQueueSize;
#endif
pThis->iQueueSize -= iQueueSize;
iQueueSize = 0;
break;
}
localRet = qqueueDeq(pThis, &pMsg);
if (localRet == RS_RET_FILE_NOT_FOUND) {
DBGPRINTF(
"fatal error on disk queue '%s': file '%s' "
"not found, queue size said to be %d",
obj.GetName((obj_t *)pThis), "...", iQueueSize);
}
CHKiRet(localRet);
/* check if we should discard this element */
localRet = qqueueChkDiscardMsg(pThis, pThis->iQueueSize, pMsg);
if (localRet == RS_RET_QUEUE_FULL) {
++nDiscarded;
continue;
} else if (localRet != RS_RET_OK) {
ABORT_FINALIZE(localRet);
}
/* all well, use this element */
pWti->batch.pElem[nDequeued].pMsg = pMsg;
pWti->batch.eltState[nDequeued] = BATCH_STATE_RDY;
++nDequeued;
if (nDequeued < iMinDeqBatchSize && getLogicalQueueSize(pThis) == 0) {
while (!pThis->bShutdownImmediate && keep_running && nDequeued < iMinDeqBatchSize &&
getLogicalQueueSize(pThis) == 0) {
dbgprintf(
"%s minDeqBatchSize doing wait, batch is %d messages, "
"queue size %d\n",
obj.GetName((obj_t *)pThis), nDequeued, getLogicalQueueSize(pThis));
if (wtiWaitNonEmpty(pWti, timeout) == 0) { /* timeout? */
DBGPRINTF("%s minDeqBatchSize timeout, batch is %d messages\n", obj.GetName((obj_t *)pThis),
nDequeued);
keep_running = 0;
}
}
}
if (keep_running) {
keep_running = (getLogicalQueueSize(pThis) > 0) && (nDequeued < pThis->iDeqBatchSize);
}
}
if (pThis->qType == QUEUETYPE_DISK) {
strm.GetCurrOffset(pThis->tVars.disk.pReadDeq, &pThis->tVars.disk.deqOffs);
pThis->tVars.disk.deqFileNumOut = strmGetCurrFileNum(pThis->tVars.disk.pReadDeq);
}
/* it is sufficient to persist only when the bulk of work is done */
qqueueChkPersist(pThis, nDequeued + nDiscarded + nDeleted);
/* If messages where DISCARDED, we need to substract them from the OverallQueueSize */
#ifdef ENABLE_IMDIAG
#ifdef HAVE_ATOMIC_BUILTINS
ATOMIC_SUB(&iOverallQueueSize, nDiscarded, &NULL);
#else
iOverallQueueSize -= nDiscarded; /* racy, but we can't wait for a mutex! */
#endif
DBGOPRINT((obj_t *)pThis, "dequeued %d discarded %d QueueSize %d consumable elements, szlog %d sz phys %d\n",
nDequeued, nDiscarded, iOverallQueueSize, getLogicalQueueSize(pThis), getPhysicalQueueSize(pThis));
#else
DBGOPRINT((obj_t *)pThis, "dequeued %d discarded %d consumable elements, szlog %d sz phys %d\n", nDequeued,
nDiscarded, getLogicalQueueSize(pThis), getPhysicalQueueSize(pThis));
#endif
pWti->batch.nElem = nDequeued;
pWti->batch.nElemDeq = nDequeued + nDiscarded;
pWti->batch.deqID = getNextDeqID(pThis);
*piRemainingQueueSize = iQueueSize;
finalize_it:
RETiRet;
}
/* dequeue the queued object for the queue consumers.
* rgerhards, 2008-10-21
* I made a radical change - we now dequeue multiple elements, and store these objects in
* an array of user pointers. We expect that this increases performance.
* rgerhards, 2009-04-22
*/
static rsRetVal DequeueConsumable(qqueue_t *pThis, wti_t *pWti, int *const pSkippedMsgs) {
DEFiRet;
int iQueueSize = 0; /* keep the compiler happy... */
*pSkippedMsgs = 0;
/* dequeue element batch (still protected from mutex) */
iRet = DequeueConsumableElements(pThis, pWti, &iQueueSize, pSkippedMsgs);
if (*pSkippedMsgs > 0) {
LogError(0, RS_RET_ERR, "%s: lost %d messages from diskqueue (invalid .qi file)", obj.GetName((obj_t *)pThis),
*pSkippedMsgs);
}
/* awake some flow-controlled sources if we can do this right now */
/* TODO: this could be done better from a performance point of view -- do it only if
* we have someone waiting for the condition (or only when we hit the watermark right
* on the nail [exact value]) -- rgerhards, 2008-03-14
* now that we dequeue batches of pointers, this is much less an issue...
* rgerhards, 2009-04-22
*/
if (iQueueSize < pThis->iFullDlyMrk / 2 || glbl.GetGlobalInputTermState() == 1) {
pthread_cond_broadcast(&pThis->belowFullDlyWtrMrk);
}
if (iQueueSize < pThis->iLightDlyMrk / 2) {
pthread_cond_broadcast(&pThis->belowLightDlyWtrMrk);
}
pthread_cond_signal(&pThis->notFull);
/* WE ARE NO LONGER PROTECTED BY THE MUTEX */
if (iRet != RS_RET_OK && iRet != RS_RET_DISCARDMSG) {
LogError(0, iRet,
"%s: error dequeueing element - ignoring, "
"but strange things may happen",
obj.GetName((obj_t *)pThis));
}
RETiRet;
}
/* The rate limiter
*
* IMPORTANT: the rate-limiter MUST unlock and re-lock the queue when
* it actually delays processing. Otherwise inputs are stalled.
*
* Here we may wait if a dequeue time window is defined or if we are
* rate-limited. TODO: If we do so, we should also look into the
* way new worker threads are spawned. Obviously, it doesn't make much
* sense to spawn additional worker threads when none of them can do any
* processing. However, it is deemed acceptable to allow this for an initial
* implementation of the timeframe/rate limiting feature.
* Please also note that these feature could also be implemented at the action
* level. However, that would limit them to be used together with actions. We have
* taken the broader approach, moving it right into the queue. This is even
* necessary if we want to prevent spawning of multiple unnecessary worker
* threads as described above. -- rgerhards, 2008-04-02
*
*
* time window: tCurr is current time; tFrom is start time, tTo is end time (in mil 24h format).
* We may have tFrom = 4, tTo = 10 --> run from 4 to 10 hrs. nice and happy
* we may also have tFrom= 22, tTo = 4 -> run from 10pm to 4am, which is actually two
* windows: 0-4; 22-23:59
* so when to run? Let's assume we have 3am
*
* if(tTo < tFrom) {
* if(tCurr < tTo [3 < 4] || tCurr > tFrom [3 > 22])
* do work
* else
* sleep for tFrom - tCurr "hours" [22 - 5 --> 17]
* } else {
* if(tCurr >= tFrom [3 >= 4] && tCurr < tTo [3 < 10])
* do work
* else
* sleep for tTo - tCurr "hours" [4 - 3 --> 1]
* }
*
* Bottom line: we need to check which type of window we have and need to adjust our
* logic accordingly. Of course, sleep calculations need to be done up to the minute,
* but you get the idea from the code above.
*/
static rsRetVal RateLimiter(qqueue_t *pThis) {
DEFiRet;
int iDelay;
int iHrCurr;
time_t tCurr;
struct tm m;
ISOBJ_TYPE_assert(pThis, qqueue);
iDelay = 0;
if (pThis->iDeqtWinToHr != 25) { /* 25 means disabled */
/* time calls are expensive, so only do them when needed */
datetime.GetTime(&tCurr);
localtime_r(&tCurr, &m);
iHrCurr = m.tm_hour;
if (pThis->iDeqtWinToHr < pThis->iDeqtWinFromHr) {
if (iHrCurr < pThis->iDeqtWinToHr || iHrCurr > pThis->iDeqtWinFromHr) {
; /* do not delay */
} else {
iDelay = (pThis->iDeqtWinFromHr - iHrCurr) * 3600;
/* this time, we are already into the next hour, so we need
* to subtract our current minute and seconds.
*/
iDelay -= m.tm_min * 60;
iDelay -= m.tm_sec;
}
} else {
if (iHrCurr >= pThis->iDeqtWinFromHr && iHrCurr < pThis->iDeqtWinToHr) {
; /* do not delay */
} else {
if (iHrCurr < pThis->iDeqtWinFromHr) {
iDelay = (pThis->iDeqtWinFromHr - iHrCurr - 1) * 3600;
/* -1 as we are already in the hour */
iDelay += (60 - m.tm_min) * 60;
iDelay += 60 - m.tm_sec;
} else {
iDelay = (24 - iHrCurr + pThis->iDeqtWinFromHr) * 3600;
/* this time, we are already into the next hour, so we need
* to subtract our current minute and seconds.
*/
iDelay -= m.tm_min * 60;
iDelay -= m.tm_sec;
}
}
}
}
if (iDelay > 0) {
pthread_mutex_unlock(pThis->mut);
DBGOPRINT((obj_t *)pThis, "outside dequeue time window, delaying %d seconds\n", iDelay);
srSleep(iDelay, 0);
pthread_mutex_lock(pThis->mut);
}
RETiRet;
}
/* This dequeues the next batch. Note that this function must not be
* cancelled, else it will leave back an inconsistent state.
* rgerhards, 2009-05-20
*/
static rsRetVal DequeueForConsumer(qqueue_t *pThis, wti_t *pWti, int *const pSkippedMsgs) {
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
ISOBJ_TYPE_assert(pWti, wti);
CHKiRet(DequeueConsumable(pThis, pWti, pSkippedMsgs));
if (pWti->batch.nElem == 0) ABORT_FINALIZE(RS_RET_IDLE);
finalize_it:
RETiRet;
}
/* This is called when a batch is processed and the worker does not
* ask for another batch (e.g. because it is to be terminated)
* Note that we must not be terminated while we delete a processed
* batch. Otherwise, we may not complete it, and then the cancel
* handler also tries to delete the batch. But then it finds some of
* the messages already destructed. This was a bug we have seen, especially
* with disk mode, where a delete takes rather long. Anyhow, the coneptual
* problem exists in all queue modes.
* rgerhards, 2009-05-27
*/
static rsRetVal batchProcessed(qqueue_t *pThis, wti_t *pWti) {
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
ISOBJ_TYPE_assert(pWti, wti);
int iCancelStateSave;
/* at this spot, we must not be cancelled */
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &iCancelStateSave);
DeleteProcessedBatch(pThis, &pWti->batch);
qqueueChkPersist(pThis, pWti->batch.nElemDeq);
pthread_setcancelstate(iCancelStateSave, NULL);
RETiRet;
}
/* This is the queue consumer in the regular (non-DA) case. It is
* protected by the queue mutex, but MUST release it as soon as possible.
* rgerhards, 2008-01-21
*/
static rsRetVal ConsumerReg(qqueue_t *pThis, wti_t *pWti) {
int iCancelStateSave;
int bNeedReLock = 0; /**< do we need to lock the mutex again? */
int skippedMsgs = 0; /**< did the queue loose any messages (can happen with
** disk queue if .qi file is corrupt */
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
ISOBJ_TYPE_assert(pWti, wti);
iRet = DequeueForConsumer(pThis, pWti, &skippedMsgs);
if (iRet == RS_RET_FILE_NOT_FOUND) {
/* This is a fatal condition and means the queue is almost unusable */
d_pthread_mutex_unlock(pThis->mut);
DBGOPRINT((obj_t *)pThis, "got 'file not found' error %d, queue defunct\n", iRet);
iRet = queueSwitchToEmergencyMode(pThis, iRet);
// TODO: think about what to return as iRet -- keep RS_RET_FILE_NOT_FOUND?
d_pthread_mutex_lock(pThis->mut);
}
if (iRet != RS_RET_OK) {
FINALIZE;
}
/* we now have a non-idle batch of work, so we can release the queue mutex and process it */
d_pthread_mutex_unlock(pThis->mut);
bNeedReLock = 1;
/* report errors, now that we are outside of queue lock */
if (skippedMsgs > 0) {
LogError(0, 0,
"problem on disk queue '%s': "
"queue files contain %d messages fewer than specified "
"in .qi file -- we lost those messages. That's all we know.",
obj.GetName((obj_t *)pThis), skippedMsgs);
}
/* at this spot, we may be cancelled */
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &iCancelStateSave);
pWti->pbShutdownImmediate = &pThis->bShutdownImmediate;
CHKiRet(pThis->pConsumer(pThis->pAction, &pWti->batch, pWti));
/* we now need to check if we should deliberately delay processing a bit
* and, if so, do that. -- rgerhards, 2008-01-30
*/
if (pThis->iDeqSlowdown) {
DBGOPRINT((obj_t *)pThis, "sleeping %d microseconds as requested by config params\n", pThis->iDeqSlowdown);
srSleep(pThis->iDeqSlowdown / 1000000, pThis->iDeqSlowdown % 1000000);
}
/* but now cancellation is no longer permitted */
pthread_setcancelstate(iCancelStateSave, NULL);
finalize_it:
DBGPRINTF("regular consumer finished, iret=%d, szlog %d sz phys %d\n", iRet, getLogicalQueueSize(pThis),
getPhysicalQueueSize(pThis));
/* now we are done, but potentially need to re-acquire the mutex */
if (bNeedReLock) d_pthread_mutex_lock(pThis->mut);
RETiRet;
}
/* This is a special consumer to feed the disk-queue in disk-assisted mode.
* When active, our own queue more or less acts as a memory buffer to the disk.
* So this consumer just needs to drain the memory queue and submit entries
* to the disk queue. The disk queue will then call the actual consumer from
* the app point of view (we chain two queues here).
* When this method is entered, the mutex is always locked and needs to be unlocked
* as part of the processing.
* rgerhards, 2008-01-14
*/
static rsRetVal ConsumerDA(qqueue_t *pThis, wti_t *pWti) {
int i;
int iCancelStateSave;
int bNeedReLock = 0; /**< do we need to lock the mutex again? */
int skippedMsgs = 0;
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
ISOBJ_TYPE_assert(pWti, wti);
CHKiRet(DequeueForConsumer(pThis, pWti, &skippedMsgs));
/* we now have a non-idle batch of work, so we can release the queue mutex and process it */
d_pthread_mutex_unlock(pThis->mut);
bNeedReLock = 1;
/* at this spot, we may be cancelled */
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &iCancelStateSave);
/* iterate over returned results and enqueue them in DA queue */
for (i = 0; i < pWti->batch.nElem && !pThis->bShutdownImmediate; i++) {
iRet = qqueueEnqMsg(pThis->pqDA, eFLOWCTL_NO_DELAY, MsgAddRef(pWti->batch.pElem[i].pMsg));
if (iRet != RS_RET_OK) {
if (iRet == RS_RET_ERR_QUEUE_EMERGENCY) {
/* Queue emergency error occurred */
DBGOPRINT((obj_t *)pThis,
"ConsumerDA:qqueueEnqMsg caught RS_RET_ERR_QUEUE_EMERGENCY,"
"aborting loop.\n");
FINALIZE;
} else {
DBGOPRINT((obj_t *)pThis,
"ConsumerDA:qqueueEnqMsg item (%d) returned "
"with error state: '%d'\n",
i, iRet);
}
}
pWti->batch.eltState[i] = BATCH_STATE_COMM; /* commited to other queue! */
}
/* but now cancellation is no longer permitted */
pthread_setcancelstate(iCancelStateSave, NULL);
finalize_it:
/* Check the last return state of qqueueEnqMsg. If an error was returned, we acknowledge it only.
* Unless the error code is RS_RET_ERR_QUEUE_EMERGENCY, we reset the return state to RS_RET_OK.
* Otherwise the Caller functions would run into an infinite Loop trying to enqueue the
* same messages over and over again.
*
* However we do NOT overwrite positive return states like
* RS_RET_TERMINATE_NOW,
* RS_RET_NO_RUN,
* RS_RET_IDLE,
* RS_RET_TERMINATE_WHEN_IDLE
* These return states are important for Queue handling of the upper laying functions.
* RGer: Note that checking for iRet < 0 is a bit bold. In theory, positive iRet
* values are "OK" states, and things that the caller shall deal with. However,
* this has not been done so consistently. Andre convinced me that the current
* code is an elegant solution. However, if problems with queue workers and/or
* shutdown come up, this code here should be looked at suspiciously. In those
* cases it may work out to check all status codes explicitely, just to avoid
* a pitfall due to unexpected states being passed on to the caller.
*/
if (iRet != RS_RET_OK && iRet != RS_RET_ERR_QUEUE_EMERGENCY && iRet < 0) {
DBGOPRINT((obj_t *)pThis, "ConsumerDA:qqueueEnqMsg Resetting iRet from %d back to RS_RET_OK\n", iRet);
iRet = RS_RET_OK;
} else {
DBGOPRINT((obj_t *)pThis, "ConsumerDA:qqueueEnqMsg returns with iRet %d\n", iRet);
}
/* now we are done, but potentially need to re-acquire the mutex */
if (bNeedReLock) d_pthread_mutex_lock(pThis->mut);
RETiRet;
}
/* must only be called when the queue mutex is locked, else results
* are not stable!
*/
static rsRetVal qqueueChkStopWrkrDA(qqueue_t *pThis) {
DEFiRet;
DBGPRINTF("rger: chkStopWrkrDA called, low watermark %d, log Size %d, phys Size %d, bEnqOnly %d\n",
pThis->iLowWtrMrk, getLogicalQueueSize(pThis), getPhysicalQueueSize(pThis), pThis->bEnqOnly);
if (pThis->bEnqOnly) {
iRet = RS_RET_TERMINATE_WHEN_IDLE;
}
if (getPhysicalQueueSize(pThis) <= pThis->iLowWtrMrk) {
iRet = RS_RET_TERMINATE_NOW;
}
RETiRet;
}
/* must only be called when the queue mutex is locked, else results
* are not stable!
* If we are a child, we have done our duty when the queue is empty. In that case,
* we can terminate. Version for the regular worker thread.
*/
static rsRetVal ChkStopWrkrReg(qqueue_t *pThis) {
DEFiRet;
/*DBGPRINTF("XXXX: chkStopWrkrReg called, low watermark %d, log Size %d, phys Size %d, bEnqOnly %d\n",
pThis->iLowWtrMrk, getLogicalQueueSize(pThis), getPhysicalQueueSize(pThis), pThis->bEnqOnly);*/
if (pThis->bEnqOnly) {
iRet = RS_RET_TERMINATE_NOW;
} else if (pThis->pqParent != NULL) {
iRet = RS_RET_TERMINATE_WHEN_IDLE;
}
RETiRet;
}
/* return the configured "deq max at once" interval
* rgerhards, 2009-04-22
*/
static rsRetVal GetDeqBatchSize(qqueue_t *pThis, int *pVal) {
DEFiRet;
assert(pVal != NULL);
*pVal = pThis->iDeqBatchSize;
RETiRet;
}
/* start up the queue - it must have been constructed and parameters defined
* before.
*/
rsRetVal qqueueStart(rsconf_t *cnf, qqueue_t *pThis) /* this is the ConstructionFinalizer */
{
DEFiRet;
uchar pszBuf[64];
uchar pszQIFNam[MAXFNAME];
int wrk;
uchar *qName;
size_t lenBuf;
assert(pThis != NULL);
/* do not modify the queue if it's already running(happens when dynamic config reload is invoked
* and the queue is used in the new config as well)
*/
if (pThis->isRunning) FINALIZE;
dbgoprint((obj_t *)pThis, "starting queue\n");
if (pThis->pszSpoolDir == NULL) {
/* note: we need to pick the path so late as we do not have
* the workdir during early config load
*/
if ((pThis->pszSpoolDir = (uchar *)strdup((char *)glbl.GetWorkDir(cnf))) == NULL)
ABORT_FINALIZE(RS_RET_OUT_OF_MEMORY);
pThis->lenSpoolDir = ustrlen(pThis->pszSpoolDir);
}
/* set type-specific handlers and other very type-specific things
* (we can not totally hide it...)
*/
switch (pThis->qType) {
case QUEUETYPE_FIXED_ARRAY:
pThis->qConstruct = qConstructFixedArray;
pThis->qDestruct = qDestructFixedArray;
pThis->qAdd = qAddFixedArray;
pThis->qDeq = qDeqFixedArray;
pThis->qDel = qDelFixedArray;
pThis->MultiEnq = qqueueMultiEnqObjNonDirect;
break;
case QUEUETYPE_LINKEDLIST:
pThis->qConstruct = qConstructLinkedList;
pThis->qDestruct = qDestructLinkedList;
pThis->qAdd = qAddLinkedList;
pThis->qDeq = qDeqLinkedList;
pThis->qDel = qDelLinkedList;
pThis->MultiEnq = qqueueMultiEnqObjNonDirect;
break;
case QUEUETYPE_DISK:
pThis->qConstruct = qConstructDisk;
pThis->qDestruct = qDestructDisk;
pThis->qAdd = qAddDisk;
pThis->qDeq = qDeqDisk;
pThis->qDel = NULL; /* delete for disk handled via special code! */
pThis->MultiEnq = qqueueMultiEnqObjNonDirect;
/* pre-construct file name for .qi file */
pThis->lenQIFNam = snprintf((char *)pszQIFNam, sizeof(pszQIFNam), "%s/%s.qi", (char *)pThis->pszSpoolDir,
(char *)pThis->pszFilePrefix);
pThis->pszQIFNam = ustrdup(pszQIFNam);
DBGOPRINT((obj_t *)pThis, ".qi file name is '%s', len %d\n", pThis->pszQIFNam, (int)pThis->lenQIFNam);
break;
case QUEUETYPE_DIRECT:
pThis->qConstruct = qConstructDirect;
pThis->qDestruct = qDestructDirect;
/* these entry points shall not be used in direct mode
* To catch program errors, make us abort if that happens!
* rgerhards, 2013-11-05
*/
pThis->qAdd = qAddDirect;
pThis->MultiEnq = qqueueMultiEnqObjDirect;
pThis->qDel = NULL;
break;
default:
// We need to satisfy compiler which does not properly handle enum
break;
}
/* finalize some initializations that could not yet be done because it is
* influenced by properties which might have been set after queueConstruct ()
*/
if (pThis->pqParent == NULL) {
CHKmalloc(pThis->mut = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t)));
pthread_mutex_init(pThis->mut, NULL);
} else {
/* child queue, we need to use parent's mutex */
DBGOPRINT((obj_t *)pThis, "I am a child\n");
pThis->mut = pThis->pqParent->mut;
}
pthread_mutex_init(&pThis->mutThrdMgmt, NULL);
pthread_cond_init(&pThis->notFull, NULL);
pthread_cond_init(&pThis->belowFullDlyWtrMrk, NULL);
pthread_cond_init(&pThis->belowLightDlyWtrMrk, NULL);
/* call type-specific constructor */
CHKiRet(pThis->qConstruct(pThis)); /* this also sets bIsDA */
/* re-adjust some params if required */
if (pThis->bIsDA) {
/* if we are in DA mode, we must make sure full delayable messages do not
* initiate going to disk!
*/
wrk = pThis->iHighWtrMrk - (pThis->iHighWtrMrk / 100) * 50; /* 50% of high water mark */
if (wrk < pThis->iFullDlyMrk) pThis->iFullDlyMrk = wrk;
}
DBGOPRINT((obj_t *)pThis,
"params: type %d, enq-only %d, disk assisted %d, spoolDir '%s', maxFileSz %lld, "
"maxQSize %d, lqsize %d, pqsize %d, child %d, full delay %d, "
"light delay %d, deq batch size %d, min deq batch size %d, "
"high wtrmrk %d, low wtrmrk %d, "
"discardmrk %d, max wrkr %d, min msgs f. wrkr %d "
"takeFlowCtlFromMsg %d\n",
pThis->qType, pThis->bEnqOnly, pThis->bIsDA, pThis->pszSpoolDir, pThis->iMaxFileSize,
pThis->iMaxQueueSize, getLogicalQueueSize(pThis), getPhysicalQueueSize(pThis),
pThis->pqParent == NULL ? 0 : 1, pThis->iFullDlyMrk, pThis->iLightDlyMrk, pThis->iDeqBatchSize,
pThis->iMinDeqBatchSize, pThis->iHighWtrMrk, pThis->iLowWtrMrk, pThis->iDiscardMrk,
(int)pThis->iNumWorkerThreads, (int)pThis->iMinMsgsPerWrkr, pThis->takeFlowCtlFromMsg);
pThis->bQueueStarted = 1;
if (pThis->qType == QUEUETYPE_DIRECT) FINALIZE; /* with direct queues, we are already finished... */
/* create worker thread pools for regular and DA operation.
*/
lenBuf = snprintf((char *)pszBuf, sizeof(pszBuf), "%.*s:Reg", (int)(sizeof(pszBuf) - 16),
obj.GetName((obj_t *)pThis)); /* leave some room inside the name for suffixes */
if (lenBuf >= sizeof(pszBuf)) {
LogError(0, RS_RET_INTERNAL_ERROR,
"%s:%d debug header too long: %zd - in "
"thory this cannot happen - truncating",
__FILE__, __LINE__, lenBuf);
lenBuf = sizeof(pszBuf) - 1;
pszBuf[lenBuf] = '\0';
}
CHKiRet(wtpConstruct(&pThis->pWtpReg));
CHKiRet(wtpSetDbgHdr(pThis->pWtpReg, pszBuf, lenBuf));
CHKiRet(wtpSetpfRateLimiter(pThis->pWtpReg, (rsRetVal(*)(void *pUsr))RateLimiter));
CHKiRet(wtpSetpfChkStopWrkr(pThis->pWtpReg, (rsRetVal(*)(void *pUsr, int))ChkStopWrkrReg));
CHKiRet(wtpSetpfGetDeqBatchSize(pThis->pWtpReg, (rsRetVal(*)(void *pUsr, int *))GetDeqBatchSize));
CHKiRet(wtpSetpfDoWork(pThis->pWtpReg, (rsRetVal(*)(void *pUsr, void *pWti))ConsumerReg));
CHKiRet(wtpSetpfObjProcessed(pThis->pWtpReg, (rsRetVal(*)(void *pUsr, wti_t *pWti))batchProcessed));
CHKiRet(wtpSetpmutUsr(pThis->pWtpReg, pThis->mut));
CHKiRet(wtpSetiNumWorkerThreads(pThis->pWtpReg, pThis->iNumWorkerThreads));
CHKiRet(wtpSettoWrkShutdown(pThis->pWtpReg, pThis->toWrkShutdown));
CHKiRet(wtpSetpUsr(pThis->pWtpReg, pThis));
CHKiRet(wtpConstructFinalize(pThis->pWtpReg));
/* Validate queue configuration before starting */
if (pThis->qType == QUEUETYPE_DISK || pThis->bIsDA) {
/* Check that maxDiskSpace is not smaller than maxFileSize */
if (pThis->sizeOnDiskMax > 0 && pThis->iMaxFileSize > 0 && pThis->sizeOnDiskMax < pThis->iMaxFileSize) {
LogError(0, RS_RET_CONF_PARAM_INVLD,
"queue.maxDiskSpace (%lld) must be larger than queue.maxFileSize (%lld) - "
"setting queue.maxDiskSpace to %lld",
pThis->sizeOnDiskMax, pThis->iMaxFileSize, pThis->iMaxFileSize);
pThis->sizeOnDiskMax = pThis->iMaxFileSize;
}
}
/* set up DA system if we have a disk-assisted queue */
if (pThis->bIsDA) InitDA(pThis, LOCK_MUTEX); /* initiate DA mode */
DBGOPRINT((obj_t *)pThis, "queue finished initialization\n");
/* if the queue already contains data, we need to start the correct number of worker threads. This can be
* the case when a disk queue has been loaded. If we did not start it here, it would never start.
*/
qqueueAdviseMaxWorkers(pThis);
/* support statistics gathering */
qName = obj.GetName((obj_t *)pThis);
CHKiRet(statsobj.Construct(&pThis->statsobj));
CHKiRet(statsobj.SetName(pThis->statsobj, qName));
CHKiRet(statsobj.SetOrigin(pThis->statsobj, (uchar *)"core.queue"));
/* we need to save the queue size, as the stats module initializes it to 0! */
/* iQueueSize is a dual-use counter: no init, no mutex! */
CHKiRet(
statsobj.AddCounter(pThis->statsobj, UCHAR_CONSTANT("size"), ctrType_Int, CTR_FLAG_NONE, &pThis->iQueueSize));
STATSCOUNTER_INIT(pThis->ctrEnqueued, pThis->mutCtrEnqueued);
CHKiRet(statsobj.AddCounter(pThis->statsobj, UCHAR_CONSTANT("enqueued"), ctrType_IntCtr, CTR_FLAG_RESETTABLE,
&pThis->ctrEnqueued));
STATSCOUNTER_INIT(pThis->ctrFull, pThis->mutCtrFull);
CHKiRet(statsobj.AddCounter(pThis->statsobj, UCHAR_CONSTANT("full"), ctrType_IntCtr, CTR_FLAG_RESETTABLE,
&pThis->ctrFull));
STATSCOUNTER_INIT(pThis->ctrFDscrd, pThis->mutCtrFDscrd);
CHKiRet(statsobj.AddCounter(pThis->statsobj, UCHAR_CONSTANT("discarded.full"), ctrType_IntCtr, CTR_FLAG_RESETTABLE,
&pThis->ctrFDscrd));
STATSCOUNTER_INIT(pThis->ctrNFDscrd, pThis->mutCtrNFDscrd);
CHKiRet(statsobj.AddCounter(pThis->statsobj, UCHAR_CONSTANT("discarded.nf"), ctrType_IntCtr, CTR_FLAG_RESETTABLE,
&pThis->ctrNFDscrd));
pThis->ctrMaxqsize = 0; /* no mutex needed, thus no init call */
CHKiRet(statsobj.AddCounter(pThis->statsobj, UCHAR_CONSTANT("maxqsize"), ctrType_Int, CTR_FLAG_NONE,
&pThis->ctrMaxqsize));
CHKiRet(statsobj.ConstructFinalize(pThis->statsobj));
finalize_it:
if (iRet != RS_RET_OK) {
/* note: a child uses it's parent mutex, so do not delete it! */
if (pThis->pqParent == NULL && pThis->mut != NULL) free(pThis->mut);
} else {
pThis->isRunning = 1;
}
RETiRet;
}
/* persist the queue to disk (write the .qi file). If we have something to persist, we first
* save the information on the queue properties itself and then we call
* the queue-type specific drivers.
* Variable bIsCheckpoint is set to 1 if the persist is for a checkpoint,
* and 0 otherwise.
* rgerhards, 2008-01-10
*/
static rsRetVal qqueuePersist(qqueue_t *pThis, int bIsCheckpoint) {
DEFiRet;
char *tmpQIFName = NULL;
strm_t *psQIF = NULL; /* Queue Info File */
char errStr[1024];
assert(pThis != NULL);
if (pThis->qType != QUEUETYPE_DISK) {
if (getPhysicalQueueSize(pThis) > 0) {
/* This error code is OK, but we will probably not implement this any time
* The reason is that persistence happens via DA queues. But I would like to
* leave the code as is, as we so have a hook in case we need one.
* -- rgerhards, 2008-01-28
*/
ABORT_FINALIZE(RS_RET_NOT_IMPLEMENTED);
} else
FINALIZE; /* if the queue is empty, we are happy and done... */
}
DBGOPRINT((obj_t *)pThis, "persisting queue to disk, %d entries...\n", getPhysicalQueueSize(pThis));
if ((bIsCheckpoint != QUEUE_CHECKPOINT) && (getPhysicalQueueSize(pThis) == 0)) {
if (pThis->bNeedDelQIF) {
unlink((char *)pThis->pszQIFNam);
pThis->bNeedDelQIF = 0;
}
/* indicate spool file needs to be deleted */
if (pThis->tVars.disk.pReadDel != NULL) /* may be NULL if we had a startup failure! */
CHKiRet(strm.SetbDeleteOnClose(pThis->tVars.disk.pReadDel, 1));
FINALIZE; /* nothing left to do, so be happy */
}
int lentmpQIFName;
#ifdef _AIX
lentmpQIFName = strlen(pThis->pszQIFNam) + strlen(".tmp") + 1;
tmpQIFName = malloc(sizeof(char) * lentmpQIFName);
if (tmpQIFName == NULL) tmpQIFName = (char *)pThis->pszQIFNam;
snprintf(tmpQIFName, lentmpQIFName, "%s.tmp", pThis->pszQIFNam);
#else
lentmpQIFName = asprintf((char **)&tmpQIFName, "%s.tmp", pThis->pszQIFNam);
if (tmpQIFName == NULL) tmpQIFName = (char *)pThis->pszQIFNam;
#endif
CHKiRet(strm.Construct(&psQIF));
CHKiRet(strm.SettOperationsMode(psQIF, STREAMMODE_WRITE_TRUNC));
CHKiRet(strm.SetbSync(psQIF, pThis->bSyncQueueFiles));
CHKiRet(strm.SetsType(psQIF, STREAMTYPE_FILE_SINGLE));
CHKiRet(strm.SetFName(psQIF, (uchar *)tmpQIFName, lentmpQIFName));
CHKiRet(strm.ConstructFinalize(psQIF));
/* first, write the property bag for ourselfs
* And, surprisingly enough, we currently need to persist only the size of the
* queue. All the rest is re-created with then-current config parameters when the
* queue is re-created. Well, we'll also save the current queue type, just so that
* we know when somebody has changed the queue type... -- rgerhards, 2008-01-11
*/
CHKiRet(obj.BeginSerializePropBag(psQIF, (obj_t *)pThis));
objSerializeSCALAR(psQIF, iQueueSize, INT);
objSerializeSCALAR(psQIF, tVars.disk.sizeOnDisk, INT64);
CHKiRet(obj.EndSerialize(psQIF));
/* now persist the stream info */
if (pThis->tVars.disk.pWrite != NULL) CHKiRet(strm.Serialize(pThis->tVars.disk.pWrite, psQIF));
if (pThis->tVars.disk.pReadDel != NULL) CHKiRet(strm.Serialize(pThis->tVars.disk.pReadDel, psQIF));
strm.Destruct(&psQIF);
if (tmpQIFName != (char *)pThis->pszQIFNam) { /* pointer, not string comparison! */
if (rename(tmpQIFName, (char *)pThis->pszQIFNam) != 0) {
rs_strerror_r(errno, errStr, sizeof(errStr));
DBGOPRINT((obj_t *)pThis, "FATAL error: renaming temporary .qi file failed: %s\n", errStr);
ABORT_FINALIZE(RS_RET_RENAME_TMP_QI_ERROR);
}
}
/* tell the input file object that it must not delete the file on close if the queue
* is non-empty - but only if we are not during a simple checkpoint
*/
if (bIsCheckpoint != QUEUE_CHECKPOINT && pThis->tVars.disk.pReadDel != NULL) {
CHKiRet(strm.SetbDeleteOnClose(pThis->tVars.disk.pReadDel, 0));
}
/* we have persisted the queue object. So whenever it comes to an empty queue,
* we need to delete the QIF. Thus, we indicte that need.
*/
pThis->bNeedDelQIF = 1;
finalize_it:
if (tmpQIFName != (char *)pThis->pszQIFNam) /* pointer, not string comparison! */
free(tmpQIFName);
if (psQIF != NULL) strm.Destruct(&psQIF);
RETiRet;
}
/* check if we need to persist the current queue info. If an
* error occurs, this should be ignored by caller (but we still
* abide to our regular call interface)...
* rgerhards, 2008-01-13
* nUpdates is the number of updates since the last call to this function.
* It may be > 1 due to batches. -- rgerhards, 2009-05-12
*/
static rsRetVal qqueueChkPersist(qqueue_t *const pThis, const int nUpdates) {
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
assert(nUpdates >= 0);
if (nUpdates == 0) FINALIZE;
pThis->iUpdsSincePersist += nUpdates;
if (pThis->iPersistUpdCnt && pThis->iUpdsSincePersist >= pThis->iPersistUpdCnt) {
qqueuePersist(pThis, QUEUE_CHECKPOINT);
pThis->iUpdsSincePersist = 0;
}
finalize_it:
RETiRet;
}
/* persist a queue with all data elements to disk - this is used to handle
* bSaveOnShutdown. We utilize the DA worker to do this. This must only
* be called after all workers have been shut down and if bSaveOnShutdown
* is actually set. Note that this function may potentially run long,
* depending on the queue configuration (e.g. store on remote machine).
* rgerhards, 2009-05-26
*/
static rsRetVal DoSaveOnShutdown(qqueue_t *pThis) {
struct timespec tTimeout;
rsRetVal iRetLocal;
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
/* we reduce the low water mark, otherwise the DA worker would terminate when
* it is reached.
*/
DBGOPRINT((obj_t *)pThis, "bSaveOnShutdown set, restarting DA worker...\n");
pThis->bShutdownImmediate = 0; /* would termiante the DA worker! */
pThis->iLowWtrMrk = 0;
wtpSetState(pThis->pWtpDA, wtpState_SHUTDOWN); /* shutdown worker (only) when done (was _IMMEDIATE!) */
wtpAdviseMaxWorkers(pThis->pWtpDA, 1, PERMIT_WORKER_START_DURING_SHUTDOWN); /* restart DA worker */
DBGOPRINT((obj_t *)pThis, "waiting for DA worker to terminate...\n");
timeoutComp(&tTimeout, QUEUE_TIMEOUT_ETERNAL);
/* and run the primary queue's DA worker to drain the queue */
iRetLocal = wtpShutdownAll(pThis->pWtpDA, wtpState_SHUTDOWN, &tTimeout);
DBGOPRINT((obj_t *)pThis, "end queue persistence run, iRet %d, queue size log %d, phys %d\n", iRetLocal,
getLogicalQueueSize(pThis), getPhysicalQueueSize(pThis));
if (iRetLocal != RS_RET_OK) {
DBGOPRINT((obj_t *)pThis,
"unexpected iRet state %d after trying to shut down primary "
"queue in disk save mode, continuing, but results are unpredictable\n",
iRetLocal);
}
RETiRet;
}
/* destructor for the queue object */
BEGINobjDestruct(qqueue) /* be sure to specify the object type also in END and CODESTART macros! */
CODESTARTobjDestruct(qqueue);
DBGOPRINT((obj_t *)pThis, "shutdown: begin to destruct queue\n");
if (ourConf->globals.shutdownQueueDoubleSize) {
pThis->iHighWtrMrk *= 2;
pThis->iMaxQueueSize *= 2;
}
if (pThis->bQueueStarted) {
/* shut down all workers
* We do not need to shutdown workers when we are in enqueue-only mode or we are a
* direct queue - because in both cases we have none... ;)
* with a child! -- rgerhards, 2008-01-28
*/
if (pThis->qType != QUEUETYPE_DIRECT && !pThis->bEnqOnly && pThis->pqParent == NULL && pThis->pWtpReg != NULL)
qqueueShutdownWorkers(pThis);
if (pThis->bIsDA && getPhysicalQueueSize(pThis) > 0) {
if (pThis->bSaveOnShutdown) {
LogMsg(0, RS_RET_TIMED_OUT, LOG_INFO,
"%s: queue holds %d messages after shutdown of workers. "
"queue.saveonshutdown is set, so data will now be spooled to disk",
objGetName((obj_t *)pThis), getPhysicalQueueSize(pThis));
CHKiRet(DoSaveOnShutdown(pThis));
} else {
LogMsg(0, RS_RET_TIMED_OUT, LOG_WARNING,
"%s: queue holds %d messages after shutdown of workers. "
"queue.saveonshutdown is NOT set, so data will be discarded.",
objGetName((obj_t *)pThis), getPhysicalQueueSize(pThis));
}
}
/* finally destruct our (regular) worker thread pool
* Note: currently pWtpReg is never NULL, but if we optimize our logic, this may happen,
* e.g. when they are not created in enqueue-only mode. We already check the condition
* as this may otherwise be very hard to find once we optimize (and have long forgotten
* about this condition here ;)
* rgerhards, 2008-01-25
*/
if (pThis->qType != QUEUETYPE_DIRECT && pThis->pWtpReg != NULL) {
wtpDestruct(&pThis->pWtpReg);
}
/* Now check if we actually have a DA queue and, if so, destruct it.
* Note that the wtp must be destructed first, it may be in cancel cleanup handler
* *right now* and actually *need* to access the queue object to persist some final
* data (re-queueing case). So we need to destruct the wtp first, which will make
* sure all workers have terminated. Please note that this also generates a situation
* where it is possible that the DA queue has a parent pointer but the parent has
* no WtpDA associated with it - which is perfectly legal thanks to this code here.
*/
if (pThis->pWtpDA != NULL) {
wtpDestruct(&pThis->pWtpDA);
}
if (pThis->pqDA != NULL) {
qqueueDestruct(&pThis->pqDA);
}
/* persist the queue (we always do that - queuePersits() does cleanup if the queue is empty)
* This handler is most important for disk queues, it will finally persist the necessary
* on-disk structures. In theory, other queueing modes may implement their other (non-DA)
* methods of persisting a queue between runs, but in practice all of this is done via
* disk queues and DA mode. Anyhow, it doesn't hurt to know that we could extend it here
* if need arises (what I doubt...) -- rgerhards, 2008-01-25
*/
CHKiRet_Hdlr(qqueuePersist(pThis, QUEUE_NO_CHECKPOINT)) {
DBGOPRINT((obj_t *)pThis, "error %d persisting queue - data lost!\n", iRet);
}
/* finally, clean up some simple things... */
if (pThis->pqParent == NULL) {
/* if we are not a child, we allocated our own mutex, which we now need to destroy */
pthread_mutex_destroy(pThis->mut);
free(pThis->mut);
}
pthread_mutex_destroy(&pThis->mutThrdMgmt);
pthread_cond_destroy(&pThis->notFull);
pthread_cond_destroy(&pThis->belowFullDlyWtrMrk);
pthread_cond_destroy(&pThis->belowLightDlyWtrMrk);
DESTROY_ATOMIC_HELPER_MUT(pThis->mutQueueSize);
DESTROY_ATOMIC_HELPER_MUT(pThis->mutLogDeq);
/* type-specific destructor */
iRet = pThis->qDestruct(pThis);
}
free(pThis->pszFilePrefix);
free(pThis->pszSpoolDir);
if (pThis->useCryprov) {
pThis->cryprov.Destruct(&pThis->cryprovData);
obj.ReleaseObj(__FILE__, pThis->cryprovNameFull + 2, pThis->cryprovNameFull, (void *)&pThis->cryprov);
free(pThis->cryprovName);
free(pThis->cryprovNameFull);
}
/* some queues do not provide stats and thus have no statsobj! */
if (pThis->statsobj != NULL) statsobj.Destruct(&pThis->statsobj);
ENDobjDestruct(qqueue)
/* set the queue's spool directory. The directory MUST NOT be NULL.
* The passed-in string is duplicated. So if the caller does not need
* it any longer, it must free it.
*/
rsRetVal qqueueSetSpoolDir(qqueue_t *pThis, uchar *pszSpoolDir, int lenSpoolDir) {
DEFiRet;
free(pThis->pszSpoolDir);
CHKmalloc(pThis->pszSpoolDir = ustrdup(pszSpoolDir));
pThis->lenSpoolDir = lenSpoolDir;
finalize_it:
RETiRet;
}
/* set the queue's file prefix
* The passed-in string is duplicated. So if the caller does not need
* it any longer, it must free it.
* rgerhards, 2008-01-09
*/
rsRetVal qqueueSetFilePrefix(qqueue_t *pThis, uchar *pszPrefix, size_t iLenPrefix) {
DEFiRet;
free(pThis->pszFilePrefix);
pThis->pszFilePrefix = NULL;
if (pszPrefix == NULL) /* just unset the prefix! */
ABORT_FINALIZE(RS_RET_OK);
if ((pThis->pszFilePrefix = malloc(iLenPrefix + 1)) == NULL) ABORT_FINALIZE(RS_RET_OUT_OF_MEMORY);
memcpy(pThis->pszFilePrefix, pszPrefix, iLenPrefix + 1);
pThis->lenFilePrefix = iLenPrefix;
finalize_it:
RETiRet;
}
/* set the queue's maximum file size
* rgerhards, 2008-01-09
*/
rsRetVal qqueueSetMaxFileSize(qqueue_t *pThis, size_t iMaxFileSize) {
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
if (iMaxFileSize < 1024) {
ABORT_FINALIZE(RS_RET_VALUE_TOO_LOW);
}
pThis->iMaxFileSize = iMaxFileSize;
finalize_it:
RETiRet;
}
/* enqueue a single data object.
* Note that the queue mutex MUST already be locked when this function is called.
* rgerhards, 2009-06-16
*/
static rsRetVal doEnqSingleObj(qqueue_t *pThis, flowControl_t flowCtlType, smsg_t *pMsg) {
DEFiRet;
int err;
struct timespec t;
STATSCOUNTER_INC(pThis->ctrEnqueued, pThis->mutCtrEnqueued);
/* first check if we need to discard this message (which will cause CHKiRet() to exit)
*/
CHKiRet(qqueueChkDiscardMsg(pThis, pThis->iQueueSize, pMsg));
/* handle flow control
* There are two different flow control mechanisms: basic and advanced flow control.
* Basic flow control has always been implemented and protects the queue structures
* in that it makes sure no more data is enqueued than the queue is configured to
* support. Enhanced flow control is being added today. There are some sources which
* can easily be stopped, e.g. a file reader. This is the case because it is unlikely
* that blocking those sources will have negative effects (after all, the file is
* continued to be written). Other sources can somewhat be blocked (e.g. the kernel
* log reader or the local log stream reader): in general, nothing is lost if messages
* from these sources are not picked up immediately. HOWEVER, they can not block for
* an extended period of time, as this either causes message loss or - even worse - some
* other bad effects (e.g. unresponsive system in respect to the main system log socket).
* Finally, there are some (few) sources which can not be blocked at all. UDP syslog is
* a prime example. If a UDP message is not received, it is simply lost. So we can't
* do anything against UDP sockets that come in too fast. The core idea of advanced
* flow control is that we take into account the different natures of the sources and
* select flow control mechanisms that fit these needs. This also means, in the end
* result, that non-blockable sources like UDP syslog receive priority in the system.
* It's a side effect, but a good one ;) -- rgerhards, 2008-03-14
*/
if (unlikely(pThis->takeFlowCtlFromMsg)) { /* recommendation is NOT to use this option */
flowCtlType = pMsg->flowCtlType;
}
if (flowCtlType == eFLOWCTL_FULL_DELAY) {
while (pThis->iQueueSize >= pThis->iFullDlyMrk && !glbl.GetGlobalInputTermState()) {
/* We have a problem during shutdown if we block eternally. In that
* case, the the input thread cannot be terminated. So we wake up
* from time to time to check for termination.
* TODO/v6(at earliest): check if we could signal the condition during
* shutdown. However, this requires new queue registries and thus is
* far to much change for a stable version (and I am still not sure it
* is worth the effort, given how seldom this situation occurs and how
* few resources the wakeups need). -- rgerhards, 2012-05-03
* In any case, this was the old code (if we do the TODO):
* pthread_cond_wait(&pThis->belowFullDlyWtrMrk, pThis->mut);
*/
DBGOPRINT((obj_t *)pThis,
"doEnqSingleObject: FullDelay mark reached for full "
"delayable message - blocking, queue size is %d.\n",
pThis->iQueueSize);
timeoutComp(&t, 1000);
err = pthread_cond_timedwait(&pThis->belowLightDlyWtrMrk, pThis->mut, &t);
if (err != 0 && err != ETIMEDOUT) {
/* Something is really wrong now. Report to debug log and abort the
* wait. That keeps us running, even though we may lose messages.
*/
DBGOPRINT((obj_t *)pThis,
"potential program bug: pthread_cond_timedwait()"
"/fulldelay returned %d\n",
err);
break;
}
DBGPRINTF("wti worker in full delay timed out, checking termination...\n");
}
} else if (flowCtlType == eFLOWCTL_LIGHT_DELAY && !glbl.GetGlobalInputTermState()) {
if (pThis->iQueueSize >= pThis->iLightDlyMrk) {
DBGOPRINT((obj_t *)pThis,
"doEnqSingleObject: LightDelay mark reached for light "
"delayable message - blocking a bit.\n");
timeoutComp(&t, 1000); /* 1000 millisconds = 1 second TODO: make configurable */
err = pthread_cond_timedwait(&pThis->belowLightDlyWtrMrk, pThis->mut, &t);
if (err != 0 && err != ETIMEDOUT) {
/* Something is really wrong now. Report to debug log */
DBGOPRINT((obj_t *)pThis,
"potential program bug: pthread_cond_timedwait()"
"/lightdelay returned %d\n",
err);
}
}
}
/* from our regular flow control settings, we are now ready to enqueue the object.
* However, we now need to do a check if the queue permits to add more data. If that
* is not the case, basic flow control enters the field, which means we wait for
* the queue to become ready or drop the new message. -- rgerhards, 2008-03-14
*/
while ((pThis->iMaxQueueSize > 0 && pThis->iQueueSize >= pThis->iMaxQueueSize) ||
((pThis->qType == QUEUETYPE_DISK || pThis->bIsDA) && pThis->sizeOnDiskMax != 0 &&
pThis->tVars.disk.sizeOnDisk > pThis->sizeOnDiskMax)) {
STATSCOUNTER_INC(pThis->ctrFull, pThis->mutCtrFull);
if (pThis->toEnq == 0 || pThis->bEnqOnly) {
DBGOPRINT((obj_t *)pThis,
"doEnqSingleObject: queue FULL - configured for immediate "
"discarding QueueSize=%d MaxQueueSize=%d sizeOnDisk=%lld "
"sizeOnDiskMax=%lld\n",
pThis->iQueueSize, pThis->iMaxQueueSize, pThis->tVars.disk.sizeOnDisk, pThis->sizeOnDiskMax);
STATSCOUNTER_INC(pThis->ctrFDscrd, pThis->mutCtrFDscrd);
msgDestruct(&pMsg);
ABORT_FINALIZE(RS_RET_QUEUE_FULL);
} else {
DBGOPRINT((obj_t *)pThis, "doEnqSingleObject: queue FULL - waiting %dms to drain.\n", pThis->toEnq);
if (glbl.GetGlobalInputTermState()) {
DBGOPRINT((obj_t *)pThis,
"doEnqSingleObject: queue FULL, discard due to "
"FORCE_TERM.\n");
ABORT_FINALIZE(RS_RET_FORCE_TERM);
}
timeoutComp(&t, pThis->toEnq);
const int r = pthread_cond_timedwait(&pThis->notFull, pThis->mut, &t);
if (dbgTimeoutToStderr && r != 0) {
fprintf(stderr,
"%lld: queue timeout(%dms), error %d%s, "
"lost message %s\n",
(long long)time(NULL), pThis->toEnq, r, (r == ETIMEDOUT) ? "[ETIMEDOUT]" : "", pMsg->pszRawMsg);
}
if (r == ETIMEDOUT) {
DBGOPRINT((obj_t *)pThis, "doEnqSingleObject: cond timeout, dropping message!\n");
STATSCOUNTER_INC(pThis->ctrFDscrd, pThis->mutCtrFDscrd);
msgDestruct(&pMsg);
ABORT_FINALIZE(RS_RET_QUEUE_FULL);
} else if (r != 0) {
DBGOPRINT((obj_t *)pThis, "doEnqSingleObject: cond error %d, dropping message!\n", r);
STATSCOUNTER_INC(pThis->ctrFDscrd, pThis->mutCtrFDscrd);
msgDestruct(&pMsg);
ABORT_FINALIZE(RS_RET_QUEUE_FULL);
}
dbgoprint((obj_t *)pThis, "doEnqSingleObject: wait solved queue full condition, enqueing\n");
}
}
/* and finally enqueue the message */
CHKiRet(qqueueAdd(pThis, pMsg));
STATSCOUNTER_SETMAX_NOMUT(pThis->ctrMaxqsize, pThis->iQueueSize);
/* check if we had a file rollover and need to persist
* the .qi file for robustness reasons.
* Note: the n=2 write is required for closing the old file and
* the n=1 write is required after opening and writing to the new
* file.
*/
if (pThis->tVars.disk.nForcePersist > 0) {
DBGOPRINT((obj_t *)pThis, ".qi file write required for robustness reasons (n=%d)\n",
pThis->tVars.disk.nForcePersist);
pThis->tVars.disk.nForcePersist--;
qqueuePersist(pThis, QUEUE_CHECKPOINT);
}
finalize_it:
RETiRet;
}
/* ------------------------------ multi-enqueue functions ------------------------------ */
/* enqueue multiple user data elements at once. The aim is to provide a faster interface
* for object submission. Uses the multi_submit_t helper object.
* Please note that this function is not cancel-safe and consequently
* sets the calling thread's cancelibility state to PTHREAD_CANCEL_DISABLE
* during its execution. If that is not done, race conditions occur if the
* thread is canceled (most important use case is input module termination).
* rgerhards, 2009-06-16
* Note: there now exists multiple different functions implementing specially
* optimized algorithms for different config cases. -- rgerhards, 2010-06-09
*/
/* now the function for all modes but direct */
static rsRetVal qqueueMultiEnqObjNonDirect(qqueue_t *pThis, multi_submit_t *pMultiSub) {
int iCancelStateSave;
int i;
rsRetVal localRet;
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
assert(pMultiSub != NULL);
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &iCancelStateSave);
d_pthread_mutex_lock(pThis->mut);
for (i = 0; i < pMultiSub->nElem; ++i) {
localRet = doEnqSingleObj(pThis, pMultiSub->ppMsgs[i]->flowCtlType, (void *)pMultiSub->ppMsgs[i]);
if (localRet != RS_RET_OK && localRet != RS_RET_QUEUE_FULL) ABORT_FINALIZE(localRet);
}
qqueueChkPersist(pThis, pMultiSub->nElem);
finalize_it:
/* make sure at least one worker is running. */
qqueueAdviseMaxWorkers(pThis);
/* and release the mutex */
d_pthread_mutex_unlock(pThis->mut);
pthread_setcancelstate(iCancelStateSave, NULL);
DBGOPRINT((obj_t *)pThis, "MultiEnqObj advised worker start\n");
RETiRet;
}
/* now, the same function, but for direct mode */
static rsRetVal qqueueMultiEnqObjDirect(qqueue_t *pThis, multi_submit_t *pMultiSub) {
int i;
wti_t *pWti;
DEFiRet;
pWti = wtiGetDummy();
pWti->pbShutdownImmediate = &pThis->bShutdownImmediate;
for (i = 0; i < pMultiSub->nElem; ++i) {
CHKiRet(qAddDirectWithWti(pThis, (void *)pMultiSub->ppMsgs[i], pWti));
}
finalize_it:
RETiRet;
}
/* ------------------------------ END multi-enqueue functions ------------------------------ */
/* enqueue a new user data element
* Enqueues the new element and awakes worker thread.
*/
rsRetVal qqueueEnqMsg(qqueue_t *pThis, flowControl_t flowCtlType, smsg_t *pMsg) {
DEFiRet;
int iCancelStateSave;
ISOBJ_TYPE_assert(pThis, qqueue);
const int isNonDirectQ = pThis->qType != QUEUETYPE_DIRECT;
if (isNonDirectQ) {
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &iCancelStateSave);
d_pthread_mutex_lock(pThis->mut);
}
CHKiRet(doEnqSingleObj(pThis, flowCtlType, pMsg));
qqueueChkPersist(pThis, 1);
finalize_it:
if (isNonDirectQ) {
/* make sure at least one worker is running. */
qqueueAdviseMaxWorkers(pThis);
/* and release the mutex */
d_pthread_mutex_unlock(pThis->mut);
pthread_setcancelstate(iCancelStateSave, NULL);
DBGOPRINT((obj_t *)pThis, "EnqueueMsg advised worker start\n");
}
RETiRet;
}
/* are any queue params set at all? 1 - yes, 0 - no
* We need to evaluate the param block for this function, which is somewhat
* inefficient. HOWEVER, this is only done during config load, so we really
* don't care... -- rgerhards, 2013-05-10
*/
int queueCnfParamsSet(struct nvlst *lst) {
int r;
struct cnfparamvals *pvals;
pvals = nvlstGetParams(lst, &pblk, NULL);
r = cnfparamvalsIsSet(&pblk, pvals);
cnfparamvalsDestruct(pvals, &pblk);
return r;
}
static rsRetVal initCryprov(qqueue_t *pThis, struct nvlst *lst) {
uchar szDrvrName[1024];
DEFiRet;
if (snprintf((char *)szDrvrName, sizeof(szDrvrName), "lmcry_%s", pThis->cryprovName) == sizeof(szDrvrName)) {
LogError(0, RS_RET_ERR,
"queue: crypto provider "
"name is too long: '%s' - encryption disabled",
pThis->cryprovName);
ABORT_FINALIZE(RS_RET_ERR);
}
pThis->cryprovNameFull = ustrdup(szDrvrName);
pThis->cryprov.ifVersion = cryprovCURR_IF_VERSION;
/* The pDrvrName+2 below is a hack to obtain the object name. It
* safes us to have yet another variable with the name without "lm" in
* front of it. If we change the module load interface, we may re-think
* about this hack, but for the time being it is efficient and clean enough.
*/
if (obj.UseObj(__FILE__, szDrvrName, szDrvrName, (void *)&pThis->cryprov) != RS_RET_OK) {
LogError(0, RS_RET_LOAD_ERROR,
"queue: could not load "
"crypto provider '%s' - encryption disabled",
szDrvrName);
ABORT_FINALIZE(RS_RET_CRYPROV_ERR);
}
if (pThis->cryprov.Construct(&pThis->cryprovData) != RS_RET_OK) {
LogError(0, RS_RET_CRYPROV_ERR,
"queue: error constructing "
"crypto provider %s dataset - encryption disabled",
szDrvrName);
ABORT_FINALIZE(RS_RET_CRYPROV_ERR);
}
CHKiRet(pThis->cryprov.SetCnfParam(pThis->cryprovData, lst, CRYPROV_PARAMTYPE_DISK));
dbgprintf("loaded crypto provider %s, data instance at %p\n", szDrvrName, pThis->cryprovData);
pThis->useCryprov = 1;
finalize_it:
RETiRet;
}
/* check the the queue file name is unique. */
static rsRetVal ATTR_NONNULL() checkUniqueDiskFile(qqueue_t *const pThis) {
DEFiRet;
struct queue_filename *queue_fn_curr = queue_filename_root;
struct queue_filename *newetry = NULL;
const char *const curr_dirname = (pThis->pszSpoolDir == NULL) ? "" : (char *)pThis->pszSpoolDir;
if (pThis->pszFilePrefix == NULL) {
FINALIZE; /* no disk queue! */
}
while (queue_fn_curr != NULL) {
if (!strcmp((const char *)pThis->pszFilePrefix, queue_fn_curr->filename) &&
!strcmp(curr_dirname, queue_fn_curr->dirname)) {
parser_errmsg(
"queue directory '%s' and file name prefix '%s' already used. "
"This is not possible. Please make it unique.",
curr_dirname, pThis->pszFilePrefix);
ABORT_FINALIZE(RS_RET_ERR_QUEUE_FN_DUP);
}
queue_fn_curr = queue_fn_curr->next;
}
/* name ok, so let's add it to the list */
CHKmalloc(newetry = calloc(1, sizeof(struct queue_filename)));
CHKmalloc(newetry->filename = strdup((char *)pThis->pszFilePrefix));
CHKmalloc(newetry->dirname = strdup(curr_dirname));
newetry->next = queue_filename_root;
queue_filename_root = newetry;
finalize_it:
if (iRet != RS_RET_OK) {
if (newetry != NULL) {
free((void *)newetry->filename);
free((void *)newetry);
}
}
RETiRet;
}
void qqueueCorrectParams(qqueue_t *pThis) {
int goodval; /* a "good value" to use for comparisons (different objects) */
if (pThis->iMaxQueueSize < 100 && (pThis->qType == QUEUETYPE_LINKEDLIST || pThis->qType == QUEUETYPE_FIXED_ARRAY)) {
LogMsg(0, RS_RET_OK_WARN, LOG_WARNING,
"Note: queue.size=\"%d\" is very "
"low and can lead to unpredictable results. See also "
"https://www.rsyslog.com/lower-bound-for-queue-sizes/",
pThis->iMaxQueueSize);
}
/* we need to do a quick check if our water marks are set plausible. If not,
* we correct the most important shortcomings.
*/
goodval = (pThis->iMaxQueueSize / 100) * 60;
if (pThis->iHighWtrMrk != -1 && pThis->iHighWtrMrk < goodval) {
LogMsg(0, RS_RET_CONF_PARSE_WARNING, LOG_WARNING,
"queue \"%s\": high water mark "
"is set quite low at %d. You should only set it below "
"60%% (%d) if you have a good reason for this.",
obj.GetName((obj_t *)pThis), pThis->iHighWtrMrk, goodval);
}
if (pThis->iNumWorkerThreads > 1) {
goodval = (pThis->iMaxQueueSize / 100) * 10;
if (pThis->iMinMsgsPerWrkr != -1 && pThis->iMinMsgsPerWrkr < goodval) {
LogMsg(0, RS_RET_CONF_PARSE_WARNING, LOG_WARNING,
"queue \"%s\": "
"queue.workerThreadMinimumMessage "
"is set quite low at %d. You should only set it below "
"10%% (%d) if you have a good reason for this.",
obj.GetName((obj_t *)pThis), pThis->iMinMsgsPerWrkr, goodval);
}
}
if (pThis->iDiscardMrk > pThis->iMaxQueueSize) {
LogError(0, RS_RET_PARAM_ERROR,
"error: queue \"%s\": "
"queue.discardMark %d is set larger than queue.size",
obj.GetName((obj_t *)pThis), pThis->iDiscardMrk);
}
goodval = (pThis->iMaxQueueSize / 100) * 80;
if (pThis->iDiscardMrk != -1 && pThis->iDiscardMrk < goodval) {
LogMsg(0, RS_RET_CONF_PARSE_WARNING, LOG_WARNING,
"queue \"%s\": queue.discardMark "
"is set quite low at %d. You should only set it below "
"80%% (%d) if you have a good reason for this.",
obj.GetName((obj_t *)pThis), pThis->iDiscardMrk, goodval);
}
if (pThis->pszFilePrefix != NULL) { /* This means we have a potential DA queue */
if (pThis->iFullDlyMrk != -1 && pThis->iFullDlyMrk < pThis->iHighWtrMrk) {
LogMsg(0, RS_RET_CONF_WRN_FULLDLY_BELOW_HIGHWTR, LOG_WARNING,
"queue \"%s\": queue.fullDelayMark "
"is set below high water mark. This will result in DA mode "
" NOT being activated for full delayable messages: In many "
"cases this is a configuration error, please check if this "
"is really what you want",
obj.GetName((obj_t *)pThis));
}
}
/* now come parameter corrections and defaults */
if (pThis->iHighWtrMrk < 2 || pThis->iHighWtrMrk > pThis->iMaxQueueSize) {
pThis->iHighWtrMrk = (pThis->iMaxQueueSize / 100) * 90;
if (pThis->iHighWtrMrk == 0) { /* guard against very low max queue sizes! */
pThis->iHighWtrMrk = pThis->iMaxQueueSize;
}
}
if (pThis->iLowWtrMrk < 2 || pThis->iLowWtrMrk > pThis->iMaxQueueSize || pThis->iLowWtrMrk > pThis->iHighWtrMrk) {
pThis->iLowWtrMrk = (pThis->iMaxQueueSize / 100) * 70;
if (pThis->iLowWtrMrk == 0) {
pThis->iLowWtrMrk = 1;
}
}
if ((pThis->iMinMsgsPerWrkr < 1 || pThis->iMinMsgsPerWrkr > pThis->iMaxQueueSize)) {
pThis->iMinMsgsPerWrkr = pThis->iMaxQueueSize / pThis->iNumWorkerThreads;
}
if (pThis->iFullDlyMrk == -1 || pThis->iFullDlyMrk > pThis->iMaxQueueSize) {
pThis->iFullDlyMrk = (pThis->iMaxQueueSize / 100) * 97;
if (pThis->iFullDlyMrk == 0) {
pThis->iFullDlyMrk = (pThis->iMaxQueueSize == 1) ? 1 : pThis->iMaxQueueSize - 1;
}
}
if (pThis->iLightDlyMrk == 0) {
pThis->iLightDlyMrk = pThis->iMaxQueueSize;
}
if (pThis->iLightDlyMrk == -1 || pThis->iLightDlyMrk > pThis->iMaxQueueSize) {
pThis->iLightDlyMrk = (pThis->iMaxQueueSize / 100) * 70;
if (pThis->iLightDlyMrk == 0) {
pThis->iLightDlyMrk = (pThis->iMaxQueueSize == 1) ? 1 : pThis->iMaxQueueSize - 1;
}
}
if (pThis->iDiscardMrk < 1 || pThis->iDiscardMrk > pThis->iMaxQueueSize) {
pThis->iDiscardMrk = (pThis->iMaxQueueSize / 100) * 98;
if (pThis->iDiscardMrk == 0) {
/* for very small queues, we disable this by default */
pThis->iDiscardMrk = pThis->iMaxQueueSize;
}
}
if (pThis->iMaxQueueSize > 0 && pThis->iDeqBatchSize > pThis->iMaxQueueSize) {
pThis->iDeqBatchSize = pThis->iMaxQueueSize;
}
}
/* apply all params from param block to queue. Must be called before
* finalizing. This supports the v6 config system. Defaults were already
* set during queue creation. The pvals object is destructed by this
* function.
*/
rsRetVal qqueueApplyCnfParam(qqueue_t *pThis, struct nvlst *lst) {
int i;
struct cnfparamvals *pvals;
int n_params_set = 0;
DEFiRet;
pvals = nvlstGetParams(lst, &pblk, NULL);
if (pvals == NULL) {
parser_errmsg("error processing queue config parameters");
ABORT_FINALIZE(RS_RET_MISSING_CNFPARAMS);
}
if (Debug) {
dbgprintf("queue param blk:\n");
cnfparamsPrint(&pblk, pvals);
}
for (i = 0; i < pblk.nParams; ++i) {
if (!pvals[i].bUsed) continue;
n_params_set++;
if (!strcmp(pblk.descr[i].name, "queue.filename")) {
pThis->pszFilePrefix = (uchar *)es_str2cstr(pvals[i].val.d.estr, NULL);
pThis->lenFilePrefix = es_strlen(pvals[i].val.d.estr);
} else if (!strcmp(pblk.descr[i].name, "queue.cry.provider")) {
pThis->cryprovName = (uchar *)es_str2cstr(pvals[i].val.d.estr, NULL);
} else if (!strcmp(pblk.descr[i].name, "queue.spooldirectory")) {
free(pThis->pszSpoolDir);
pThis->pszSpoolDir = (uchar *)es_str2cstr(pvals[i].val.d.estr, NULL);
pThis->lenSpoolDir = es_strlen(pvals[i].val.d.estr);
if (pThis->pszSpoolDir[pThis->lenSpoolDir - 1] == '/') {
pThis->pszSpoolDir[pThis->lenSpoolDir - 1] = '\0';
--pThis->lenSpoolDir;
parser_errmsg(
"queue.spooldirectory must not end with '/', "
"corrected to '%s'",
pThis->pszSpoolDir);
}
} else if (!strcmp(pblk.descr[i].name, "queue.size")) {
if (pvals[i].val.d.n > 0x7fffffff) {
parser_warnmsg(
"queue.size higher than maximum (2147483647) - "
"corrected to maximum");
pvals[i].val.d.n = 0x7fffffff;
} else if (pvals[i].val.d.n > OVERSIZE_QUEUE_WATERMARK) {
parser_warnmsg(
"queue.size=%d is very large - is this "
"really intended? More info at "
"https://www.rsyslog.com/avoid-overly-large-in-memory-queues/",
(int)pvals[i].val.d.n);
}
pThis->iMaxQueueSize = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.dequeuebatchsize")) {
pThis->iDeqBatchSize = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.mindequeuebatchsize")) {
pThis->iMinDeqBatchSize = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.mindequeuebatchsize.timeout")) {
pThis->toMinDeqBatchSize = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.maxdiskspace")) {
pThis->sizeOnDiskMax = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.highwatermark")) {
pThis->iHighWtrMrk = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.lowwatermark")) {
pThis->iLowWtrMrk = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.fulldelaymark")) {
pThis->iFullDlyMrk = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.lightdelaymark")) {
pThis->iLightDlyMrk = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.discardmark")) {
pThis->iDiscardMrk = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.discardseverity")) {
pThis->iDiscardSeverity = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.checkpointinterval")) {
pThis->iPersistUpdCnt = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.syncqueuefiles")) {
pThis->bSyncQueueFiles = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.type")) {
pThis->qType = (queueType_t)pvals[i].val.d.n;
if (pThis->qType == QUEUETYPE_DIRECT) {
/* if we have a direct queue, we mimic this param was not set.
* Our prime intent is to make sure we detect when "real" params
* are set on a direct queue, and the type setting is obviously
* not relevant here.
*/
n_params_set--;
}
} else if (!strcmp(pblk.descr[i].name, "queue.workerthreads")) {
pThis->iNumWorkerThreads = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.timeoutshutdown")) {
pThis->toQShutdown = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.timeoutactioncompletion")) {
pThis->toActShutdown = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.timeoutenqueue")) {
pThis->toEnq = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.timeoutworkerthreadshutdown")) {
pThis->toWrkShutdown = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.workerthreadminimummessages")) {
pThis->iMinMsgsPerWrkr = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.maxfilesize")) {
pThis->iMaxFileSize = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.saveonshutdown")) {
pThis->bSaveOnShutdown = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.dequeueslowdown")) {
pThis->iDeqSlowdown = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.dequeuetimebegin")) {
pThis->iDeqtWinFromHr = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.dequeuetimeend")) {
pThis->iDeqtWinToHr = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.samplinginterval")) {
pThis->iSmpInterval = pvals[i].val.d.n;
} else if (!strcmp(pblk.descr[i].name, "queue.takeflowctlfrommsg")) {
pThis->takeFlowCtlFromMsg = pvals[i].val.d.n;
} else {
DBGPRINTF(
"queue: program error, non-handled "
"param '%s'\n",
pblk.descr[i].name);
}
}
checkUniqueDiskFile(pThis);
if (pThis->qType == QUEUETYPE_DIRECT) {
if (n_params_set > 0) {
LogMsg(0, RS_RET_OK, LOG_WARNING,
"warning on queue '%s': "
"queue is in direct mode, but parameters have been set. "
"These PARAMETERS cannot be applied and WILL BE IGNORED.",
obj.GetName((obj_t *)pThis));
}
} else if (pThis->qType == QUEUETYPE_DISK) {
if (pThis->pszFilePrefix == NULL) {
LogError(0, RS_RET_QUEUE_DISK_NO_FN,
"error on queue '%s', disk mode selected, but "
"no queue file name given; queue type changed to 'linkedList'",
obj.GetName((obj_t *)pThis));
pThis->qType = QUEUETYPE_LINKEDLIST;
}
}
if (pThis->pszFilePrefix == NULL && pThis->cryprovName != NULL) {
LogError(0, RS_RET_QUEUE_CRY_DISK_ONLY,
"error on queue '%s', crypto provider can "
"only be set for disk or disk assisted queue - ignored",
obj.GetName((obj_t *)pThis));
free(pThis->cryprovName);
pThis->cryprovName = NULL;
}
if (pThis->cryprovName != NULL) {
initCryprov(pThis, lst);
}
cnfparamvalsDestruct(pvals, &pblk);
finalize_it:
RETiRet;
}
/* return 1 if the content of two qqueue_t structs equal */
int queuesEqual(qqueue_t *pOld, qqueue_t *pNew) {
return (NUM_EQUALS(qType) && NUM_EQUALS(iMaxQueueSize) && NUM_EQUALS(iDeqBatchSize) &&
NUM_EQUALS(iMinDeqBatchSize) && NUM_EQUALS(toMinDeqBatchSize) && NUM_EQUALS(sizeOnDiskMax) &&
NUM_EQUALS(iHighWtrMrk) && NUM_EQUALS(iLowWtrMrk) && NUM_EQUALS(iFullDlyMrk) && NUM_EQUALS(iLightDlyMrk) &&
NUM_EQUALS(iDiscardMrk) && NUM_EQUALS(iDiscardSeverity) && NUM_EQUALS(iPersistUpdCnt) &&
NUM_EQUALS(bSyncQueueFiles) && NUM_EQUALS(iNumWorkerThreads) && NUM_EQUALS(toQShutdown) &&
NUM_EQUALS(toActShutdown) && NUM_EQUALS(toEnq) && NUM_EQUALS(toWrkShutdown) &&
NUM_EQUALS(iMinMsgsPerWrkr) && NUM_EQUALS(iMaxFileSize) && NUM_EQUALS(bSaveOnShutdown) &&
NUM_EQUALS(iDeqSlowdown) && NUM_EQUALS(iDeqtWinFromHr) && NUM_EQUALS(iDeqtWinToHr) &&
NUM_EQUALS(iSmpInterval) && NUM_EQUALS(takeFlowCtlFromMsg) && USTR_EQUALS(pszFilePrefix) &&
USTR_EQUALS(cryprovName));
}
/* some simple object access methods
* Note: the semicolons behind the macros are actually empty declarations. This is
* a work-around for clang-format's missing understanding of generative macros.
* Some compilers may flag this empty declarations by a warning. If so, we need
* to disable this warning. Alternatively, we could exclude this code from being
* reformatted by clang-format;
*/
DEFpropSetMeth(qqueue, bSyncQueueFiles, int);
DEFpropSetMeth(qqueue, iPersistUpdCnt, int);
DEFpropSetMeth(qqueue, iDeqtWinFromHr, int);
DEFpropSetMeth(qqueue, iDeqtWinToHr, int);
DEFpropSetMeth(qqueue, toQShutdown, long);
DEFpropSetMeth(qqueue, toActShutdown, long);
DEFpropSetMeth(qqueue, toWrkShutdown, long);
DEFpropSetMeth(qqueue, toEnq, long);
DEFpropSetMeth(qqueue, iHighWtrMrk, int);
DEFpropSetMeth(qqueue, iLowWtrMrk, int);
DEFpropSetMeth(qqueue, iDiscardMrk, int);
DEFpropSetMeth(qqueue, iDiscardSeverity, int);
DEFpropSetMeth(qqueue, iLightDlyMrk, int);
DEFpropSetMeth(qqueue, iNumWorkerThreads, int);
DEFpropSetMeth(qqueue, iMinMsgsPerWrkr, int);
DEFpropSetMeth(qqueue, bSaveOnShutdown, int);
DEFpropSetMeth(qqueue, pAction, action_t *);
DEFpropSetMeth(qqueue, iDeqSlowdown, int);
DEFpropSetMeth(qqueue, iDeqBatchSize, int);
DEFpropSetMeth(qqueue, iMinDeqBatchSize, int);
DEFpropSetMeth(qqueue, sizeOnDiskMax, int64);
DEFpropSetMeth(qqueue, iSmpInterval, int);
/* This function can be used as a generic way to set properties. Only the subset
* of properties required to read persisted property bags is supported. This
* functions shall only be called by the property bag reader, thus it is static.
* rgerhards, 2008-01-11
*/
#define isProp(name) !rsCStrSzStrCmp(pProp->pcsName, (uchar *)name, sizeof(name) - 1)
static rsRetVal qqueueSetProperty(qqueue_t *pThis, var_t *pProp) {
DEFiRet;
ISOBJ_TYPE_assert(pThis, qqueue);
assert(pProp != NULL);
if (isProp("iQueueSize")) {
pThis->iQueueSize = pProp->val.num;
#ifdef ENABLE_IMDIAG
iOverallQueueSize += pThis->iQueueSize;
#endif
} else if (isProp("tVars.disk.sizeOnDisk")) {
pThis->tVars.disk.sizeOnDisk = pProp->val.num;
} else if (isProp("qType")) {
if (pThis->qType != pProp->val.num) ABORT_FINALIZE(RS_RET_QTYPE_MISMATCH);
}
finalize_it:
RETiRet;
}
#undef isProp
/* dummy */
static rsRetVal qqueueQueryInterface(interface_t __attribute__((unused)) * i) {
return RS_RET_NOT_IMPLEMENTED;
}
/* Initialize the stream class. Must be called as the very first method
* before anything else is called inside this class.
* rgerhards, 2008-01-09
*/
BEGINObjClassInit(qqueue, 1, OBJ_IS_CORE_MODULE)
/* request objects we use */
CHKiRet(objUse(glbl, CORE_COMPONENT));
CHKiRet(objUse(strm, CORE_COMPONENT));
CHKiRet(objUse(datetime, CORE_COMPONENT));
CHKiRet(objUse(statsobj, CORE_COMPONENT));
/* now set our own handlers */
OBJSetMethodHandler(objMethod_SETPROPERTY, qqueueSetProperty);
ENDObjClassInit(qqueue)